Occurrences and Ecotoxicological Risk Assessment of Heavy Metals in Surface Sediments from Awash River Basin, Ethiopia
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Sample Analysis
2.4. Quality Assurance and Quality Control
2.5. Statistical Analysis
2.6. Enrichment Factor
2.7. Risk Assessment
3. Results and Discussion
3.1. The Concentration of Heavy Metals and Total Organic Matter
3.2. Enrichment Factor
3.3. Correlation Analysis
3.4. Factor Analysis
3.5. Cluster Analysis
3.6. Potential Ecological Risk Index (ERI) of the Heavy Metals
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Park, J.; Presley, B.J. Trace metal contamination of sediments and organisms from the Swan Lake area of Galveston Bay. Environ. Pollut. 1997, 98, 209–221. [Google Scholar] [CrossRef]
- Soares, H.M.V.M.; Boaventura, R.A.R.; Machado, A.S.C.; Esteves da Silva, J.C.G. Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): Multivariate analysis of data. Environ. Pollut. 1999, 105, 311–323. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Qin, Y.W.; Zheng, B.H.; Zhang, L.; Zhao, Y.M. Seasonal variation of enrichment, accumulation and sources of heavy metals in suspended particulate matter and surface sediments in the Daliao river and Daliao river estuary, Northeast China. Earth Sci. 2015, 73, 5107–5117. [Google Scholar] [CrossRef]
- Buccolieri, A.; Buccolieri, G.; Cardellicchio, N.; Dell-Atti, A.; Di-Leo, A.; Maci, A. Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy). Mar. Chem. 2006, 99, 227–235. [Google Scholar] [CrossRef]
- Atkinson, C.A.; Jolley, D.F.; Simpson, S.L. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 2007, 69, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.A.; Ouyang, Y.; Huang, C.H.; Huang, D.Y. Characterization of heavy metals from banana farming soils. Clean-Soil Air Water 2010, 38, 430–436. [Google Scholar] [CrossRef]
- Paula, F.J.L.; Marins, R.V.; Aguiar, J.E.; Peres, T.F. Background values for evaluation of heavy metal contamination in sediments in the Parnaíba River Delta estuary, NE/Brazil. Mar. Pollut. Bull. 2014, 91, 424–428. [Google Scholar] [CrossRef]
- Almeida, J.A.; Diniz, Y.S.; Marques, S.G.; Faine, I.A.; Ribas, B.O.; Burneiko, R.C.; Novelli, E.L.B. The use of oxidative stress responses as biomarkers in Nile Tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination. Environ. Int. 2002, 27, 673–679. [Google Scholar] [CrossRef]
- Uluturhan, E.; Kucuksezgin, F. Heavy metal contaminants in Red Pandora (Pagellus erythrinus) tissues from the Eastern Aegean Sea, Turkey. Water Res. 2007, 41, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Biney, C.; Amuzu, A.T.; Calamari, D.; Kaba, N.; Mbome, I.L.; Naeve, H.; Ochumba, P.B.; Osibanjo, O.; Radegonde, V.; Saad, M.A. Review of heavy metals in the African aquatic environment. Ecotoxicol. Environ. Saf. 1994, 28, 134–159. [Google Scholar] [CrossRef] [PubMed]
- Japan International Cooperation Agency. Kenya Planning and Evaluation Department. A Country Profile on Environment. Available online: http://iodeweb1.vliz.be/odin/bitstream/1834/779/1/ (accessed on 25 June 2016).
- Yabe, J.; Ishizuka, M.; Umemura, T. Current Levels of Heavy Metal Pollution in Africa. J. Vet. Med. Sci. 2010, 72, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.M.; Meybeck, N. Elemental mass balance of materials carried by major world rivers. Mar. Chem. 1979, 7, 173–206. [Google Scholar] [CrossRef]
- Lietz, W.; Galling, G. Metals from sediments. Water Res. 1989, 23, 247–252. [Google Scholar] [CrossRef]
- Issa, Y.M.; Elewa, A.A.; Rizk, M.S.; Hassouna, A.F.A. Distribution of some heavy metals in Qaroun lake and river Nile, Egypt, Menofiya. J. Agric. Res. 1996, 21, 733–746. [Google Scholar]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Aguilar, A.; Borrel, A.; Reijnders, P.H. Geographical and temporal variation in levels of organochlorine contaminants in marine mammals. Mar. Environ. Res. 2002, 53, 425–452. [Google Scholar] [CrossRef]
- Alemayehu, T. The impact of uncontrolled waste disposal on surface water quality in Addis Ababa, Ethiopia. SINET Ethiop. J. Sci. 2001, 24, 93–104. [Google Scholar] [CrossRef]
- Mekonnen, K.N.; Ambushec, A.A.; Chandravanshia, B.S.; Redi-Abshiro, M.; Mc-Crindle, R.I. Assessment of potentially toxic elements in Swiss chard and sediments of Akaki River, Ethiopia. Toxicol. Environ. Chem. 2015, 96, 1501–1515. [Google Scholar] [CrossRef]
- Taddese, G.; Sonder, K.; Peden, D. The Water of the Awash River Basin a Future Challenge to Ethiopia. 2004. Available online: http://www.iwmi.cgiar.org (accessed on 15 September 2016).
- Mungai, T.M.; Owino, A.A.; Makokha, V.A.; Gao, Y.; Yan, X.; Wang, J. Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa. Environ. Sci. Pollut. Res. 2016, 23, 18533–18541. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wei, L.; Cui, L.; Zhang, M.; Wang, J. Profiles and risk assessment of heavy metals in Great Rift Lakes, Kenya. CLEAN Air Soil Water 2017, 45, 1600825. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, G.; Shi, W.; Li, J. Soil Heavy Metal Contamination and Risk Assessment Around the Fenhe Reservoir, China. Bull. Environ. Contam. Toxicol. 2014, 93, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Woitke, P.; Wellmitz, J.; Helm, D.; Kube, P.; Lepom, P.; Litheraty, P. Analysis and assessment of heavy metal pollution in Suspended solids and sediments of river Danube. Chemosphere 2003, 51, 633–642. [Google Scholar] [CrossRef]
- Feng, H.; Han, X.F.; Zhang, W.G.; Yu, L.Z. A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Mar. Pollut. Bull. 2004, 49, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Sundaray, S.K.; Nayak, B.B.; Lin, S.; Bhatta, D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—A case study: Mahanadi basin, India. J. Hazard. Mater. 2011, 186, 1837–1846. [Google Scholar] [CrossRef] [PubMed]
- Gałuszka, A.; Migaszewski, Z.M. Geochemical background—An environmental perspective. Mineralogia 2011, 42, 7–17. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Salati, S.; Moore, F. Assessment of heavy metal concentration in the Khoshk River water and sediment, Shiraz, Southwest Iran. Environ. Monit. Assess. 2010, 164, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Díaz-de Alba, M.; Galindo-Riano, M.D.; Casanueva-Marenco, M.J.; García-Vargas, M.; Kosore, C.M. Assessment of the metal pollution, potential toxicity and speciation of sediment from Algeciras Bay (South of Spain) using chemometric tools. J. Hazard. Mater. 2011, 190, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yang, X.; Zhang, J.; Long, Y.; Zhang, Y.; Zhang, T. Assessing the Variability of Heavy Metal Concentrations in Liquid-Solid Two-Phase and Related Environmental Risks in the Weihe River of Shaanxi Province, China. Int. J. Environ. Res. Public Health 2015, 12, 8243–8262. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, K.; Yuan, Z.; Bi, J.; Huang, L. Ecological risk assessment of heavy metals in surface sediments of six major Chinese freshwater lakes. J. Environ. Qual. 2013, 42, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.F.; Chen, C.W.; Ju, Y.R.; Kao, C.M.; Dong, C.D. Impact of disposal of dredged material on sediment quality in the Kaohsiung Ocean Dred ged Material Disposal Site, Taiwan. Chemosphere 2018, 191, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Liu, X.; Liu, Z.; Li, G. Pollution and Potential Ecological Risk Evaluation of Heavy Metals in the Sediments around Dongjiang Harbor, Tianjin. Procedia Environ. Sci. 2010, 2, 729–736. [Google Scholar] [CrossRef]
- Angulo, E. The Tomlinson Pollution Load Index applied to heavy metal ‘Mussel-Watch’ data: A useful index to assess coastal pollution. Sci. Total Environ. 1996, 187, 19–56. [Google Scholar] [CrossRef]
- Okay, O.S.; Ozmen, M.; Güngördü, A.; Yılmaz, A.; Yakan, S.D.; Karacik, B.; Tutak, B.; Schramm, K.W. Heavy metal pollution in sediments and mussels: Assessment by using pollution indices and metallothionein levels. Environ. Monit. Assess. 2016, 188, 352. [Google Scholar] [CrossRef] [PubMed]
- Yohannes, Y.B.; Ikenaka, Y.; Saengtiencha, A.; Watanabe, K.P.; Nakayama, S.M.M.; Ishizuka, M. Occurrence, distribution, and ecological risk assessment of DDTs and heavy metals in surface sediments from Lake Awassa—Ethiopian Rift Valley Lake. Environ. Sci. Pollut. Res. 2013, 20, 8663–8671. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, K.M.; Alam, M.M.; Ahmed, I.; Chowdhury, A.K. Heavy metal pollution load in sediment samples of the Buriganga river in Bangladesh. J. Bangladesh Agric. Univ. 2015, 13, 229–238. [Google Scholar] [CrossRef]
- Romic, D.; Romic, M.; Zovko, M.; Bakic, H.; Ondrasek, G. Trace metals in the coastal soils developed from estuarine floodplain sediments in the Croatian Mediterranean region. Environ. Geochem. Health 2012, 34, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.Y.; Sun, J.; Tang, C.H.; Zhang, S.H. Ecological risk assessment of heavy metals in sediment in the upper reach of the Yangtze River. Environ. Sci. Pollut. Res. 2016, 23, 11002–11013. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Wang, Y.; Zhang, R.; Guo, J.; Zhang, W.; Yu, K. Distribution, speciation, environmental risk, and source identification of heavy metals in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China. Environ. Sci. Pollut. Res. 2016, 23, 9122–9133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.G.; Feng, H.; Chang, J.N.; Qu, J.; Xie, H.; Yu, L. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes. Environ. Pollut. 2009, 157, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Rieumont, S.; De la Rosa, D.; Lima, L.; Graham, D.W.; Borroto, J.; Martínez, F.; Sanchez, J. Assessment of heavy metal levels in Almendares River sediments—Havana City, Cuba. Water Res. 2005, 39, 3945–3953. [Google Scholar] [CrossRef] [PubMed]
- Varol, M.; Şen, B. Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey. Catena 2012, 92, 1–10. [Google Scholar] [CrossRef]
- Abdullah, M.; Fasola, M.; Muhammad, A.; Malik, S.A.; Boston, N.; Bokhari, H.; Kamran, M.A.; Shafqat, M.N.; Alamdar, A.; Khan, M.; et al. Avian feathers as a non-destructive bio-monitoring tool of trace metals signatures: A case study from severely contaminated areas. Chemosphere 2015, 119, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Hanif, N.; Eqani, S.A.M.; Ali, S.M.; Cincinelli, A.; Ali, N.; Katsoyiannis, I.A.; Tanveer, Z.I.; Bokhari, H. Geo-accumulation and enrichment of trace metals in sediments and their associated risks in the Chenab River, Pakistan. J. Geochem. Explor. 2016, 165, 62–70. [Google Scholar] [CrossRef]
- Eqani, S.A.M.A.S.; Kanwal, A.; Ali, S.M.; Sohail, M.; Bhowmik, A.K.; Rizwan, U.; Alamdar, A.; Ali, N.; Fasola, M.; Shen, H. Spatial distribution of dust–bound trace metals from Pakistan and its implications for human exposure. Environ. Pollut. 2016, 213, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.Q.; Zhang, X.P. Heavy metal pollution along the Yangtze River stretches of urban area in major cities. Yangtze River 2001, 32, 23–25. [Google Scholar]
- Ghrefat, H.A.; Abu-Rukah, Y.; Rosen, M.A. Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environ. Monit. Assess. 2011, 178, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Li, H.M.; Qian, X.; Hu, W.; Wang, Y.L.; Gao, H.L. Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, South East China. Sci. Total Environ. 2013, 456–457, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Jiang, Y.; Kang, M.; Tian, Y.; Duan, J. Integrated urban landuse planning based on improving ecosystem service: Panyu case, in a typical developed area of China. J. Urban Plan. Dev. 2011, 137, 448–458. [Google Scholar] [CrossRef]
Concentration | As | Cd | Cr | Cu | Pb | Hg | Ni | Zn | TOC (%) |
---|---|---|---|---|---|---|---|---|---|
Mean | 15.87 | 2.60 | 120.58 | 79.43 | 13.53 | 0.17 | 89.46 | 382.73 | 0.48 |
Median | 0.00 | 2.43 | 90.22 | 67.94 | 18.45 | 0.10 | 68.19 | 357.50 | 0.13 |
Min | N.D. | N.D. | 10.00 | 13.58 | 0.93 | N.D. | 33.64 | 142.44 | N.D. |
Max | 67.42 | 8.35 | 712.67 | 939.21 | 67.72 | 9.02 | 928.85 | 1210.04 | 1.89 |
SD | 15.54 | 1.48 | 270.10 | 236.67 | 11.83 | 1.41 | 255.78 | 265.64 | 0.551 |
Ratio | N.A. | N.A. | 71.24 | 69.17 | 72.87 | N.A. | 28.67 | 8.49 | N.A. |
BV | 13 | 0.30 | 90.00 | 45.00 | 20.00 | 0.40 | 68.00 | 95.00 | |
% a > BV | 26.09 | 91.30 | 50 | 63.04 | 41.3 | 19.57 | 95.65 | 100.00 |
Region | As | Cd | Cr | Cu | Pb | Hg | Ni | Zn | References |
---|---|---|---|---|---|---|---|---|---|
Awash River basin, Ethiopia | 15.87 | 2.60 | 120.58 | 79.43 | 13.53 | 0.17 | 89.46 | 382.73 | This study |
Lake Awassa, Ethiopia | 4.02 | 0.21 | 8.27 | 8.69 | 15.7 | 0.03 | 20.20 | 93.80 | [38] |
Buriganga River, Bangladesh | N.A | 1.50 | 173.40 | 344.20 | 31.40 | N.A | 153.30 | 481.80 | [39] |
Neretva River Valley, Croatia | N.A. | 0.31 | 42.10 | 55.10 | 15.50 | N.A. | N.A. | 58.70 | [40] |
Yangtze River Basin, China | 8.79 | 0.93 | 80.04 | 65.80 | 51.01 | 0.10 | N.A. | 141.85 | [41] |
Lijiang River, China | 18.05 | 1.72 | 56.38 | 38.07 | 51.54 | 0.18 | N.A. | 142.16 | [42] |
Danube River, Germany | 17.60 | 1.20 | 64.00 | 65.70 | 46.30 | 0.22 | 49.6 | 187.00 | [43] |
Almendares River, Cuba | N.A. | 3.47 | N.A. | 195.00 | 189.00 | N.A. | N.A. | 85.00 | [44] |
Tigris River, Turkey | N.A. | 7.90 | N.A. | 2860.00 | 66.00 | N.A. | N.A. | 1061.00 | [45] |
Metals | Percent Enrichment Factor (EF) Categories | Mean | Median | Range | ||||
---|---|---|---|---|---|---|---|---|
EF < 2 | 2 ≤ EF < 5 | 5 ≤ EF < 20 | 20 ≤ EF < 40 | EF > 40 | ||||
As | 76.03 | 19.57 | 4.35 | - | - | 1.17 | N.D. | N.A.–7.86 |
Cd | 8.70 | - | 52.17 | 30.43 | 8.70 | 19.18 | 16.04 | N.A.–53.17 |
Cr | 50.00 | 15.22 | 17.39 | 17.39 | - | 8.31 | 1.93 | 0.23–37.87 |
Cu | 17.39 | 56.52 | 15.22 | 8.70 | 2.17 | 6.10 | 2.94 | 0.54–43.03 |
Pb | 60.87 | 32.61 | 6.52 | - | - | 2.10 | 1.66 | 0.09–7.83 |
Hg | 89.13 | 4.35 | 6.52 | - | - | 0.11 | 0.34 | N.A.–19.23 |
Ni | 41.30 | 43.48 | 8.70 | 6.52 | - | 4.88 | 2.21 | 0.70–27.52 |
Zn | 15.22 | 84.78 | - | - | - | 9.37 | 8.93 | 3.14–19.09 |
As | Cd | Cr | Cu | Pb | Hg | Ni | Zn | TOC | |
---|---|---|---|---|---|---|---|---|---|
As | 1 | ||||||||
Cd | −0.005 | 1 | |||||||
Cr | −0.341 * | 0.055 | 1 | ||||||
Cu | −0.021 | 0.525 ** | −0.278 | 1 | |||||
Pb | −0.093 | −0.199 | 0.103 | −0.561 ** | 1 | ||||
Hg | −0.027 | −0.330 * | −0.185 | −0.008 | −0.160 | 1 | |||
Ni | −0.084 | 0.659 ** | −0.191 | 0.970 ** | −0.548 ** | −0.057 | |||
Zn | 0.615 ** | 0.131 | −0.333 * | 0.001 | 0.074 | −0.233 | −0.058 | 1 | |
TOC | 0.326 * | −0.092 | −0.380 ** | −0.280 | 0.435 ** | −0.233 | −0.327 * | 0.556 ** | 1 |
Parameters | Varimax Rotation | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
As | 0.014 | 0.774 | −0.062 |
Cd | 0.612 | −0.002 | 0.621 |
Cr | −0.252 | −0.701 | 0.340 |
Cu | 0.944 | 0.048 | 0.058 |
Pb | −0.729 | 0.043 | 0.296 |
Hg | 0.052 | −0.066 | −0.865 |
Ni | 0.958 | −0.043 | 0.159 |
Zn | −0.038 | 0.830 | 0.254 |
TOC | −0.410 | 0.703 | 0.254 |
Eigenvalues | 2.995 | 2.298 | 1.450 |
% of total variance | 33.28 | 25.54 | 16.11 |
% of cumulative total variance | 33.28 | 58.82 | 74.93 |
Heavy Metals | Eri | ||
---|---|---|---|
Min | Mean | Max | |
As | N.D. | 7.41 | 51.86 |
Cd | N.D. | 254.64 | 835.49 |
Cr | 0.22 | 5.73 | 20.32 |
Cu | 1.51 | 17.16 | 104.36 |
Pb | 0.30 | 4.65 | 18.90 |
Hg | N.D. | 49.43 | 901.98 |
Ni | 2.38 | 11.87 | 68.30 |
Zn | 1.5 | 4.65 | 12.74 |
ERI | 23.26 | 355.54 | 992.67 |
* low | * high | * very high |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dirbaba, N.B.; Yan, X.; Wu, H.; Colebrooke, L.L.; Wang, J. Occurrences and Ecotoxicological Risk Assessment of Heavy Metals in Surface Sediments from Awash River Basin, Ethiopia. Water 2018, 10, 535. https://doi.org/10.3390/w10050535
Dirbaba NB, Yan X, Wu H, Colebrooke LL, Wang J. Occurrences and Ecotoxicological Risk Assessment of Heavy Metals in Surface Sediments from Awash River Basin, Ethiopia. Water. 2018; 10(5):535. https://doi.org/10.3390/w10050535
Chicago/Turabian StyleDirbaba, Niguse Bekele, Xue Yan, Hongjuan Wu, Luanettee’ Lydia Colebrooke, and Jun Wang. 2018. "Occurrences and Ecotoxicological Risk Assessment of Heavy Metals in Surface Sediments from Awash River Basin, Ethiopia" Water 10, no. 5: 535. https://doi.org/10.3390/w10050535
APA StyleDirbaba, N. B., Yan, X., Wu, H., Colebrooke, L. L., & Wang, J. (2018). Occurrences and Ecotoxicological Risk Assessment of Heavy Metals in Surface Sediments from Awash River Basin, Ethiopia. Water, 10(5), 535. https://doi.org/10.3390/w10050535