A Flood Risk Assessment of Quang Nam, Vietnam Using Spatial Multicriteria Decision Analysis
Abstract
1. Introduction
2. Research Area and Data Used
2.1. Research Area
2.2. Data Used
3. Methodology
3.1. AHP Method
- Step 1: Creating a hierarchical system by decomposing the goal into a hierarchy of interrelated clusters;
- Step 2: Making pairwise comparisons between criteria of the decision clusters to form pairwise comparison matrix A = [aij]; and,
- Step 3: Synthesizing individual subjective judgments and computing relative weights.
3.2. Flood Risk Components
3.3. AHP Judgements
- 1…N are decision makers.
- are judgements of decision makers from 1 to N.
4. Results
4.1. Flood Exposure
4.2. Flood Vulnerability
4.3. Flood Risk Assessment
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Slobodan, P.S. Floods in a Changing Climate: Risk Management; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Jongman, B.; Winsemius, H.C.; Aerts, J.C.J.H.; Coughlan de Perez, E.; van Aalst, M.K.; Kron, W.; Ward, P.J. Declining vulnerability to river floods and the global benefits of adaptation. Proc. Natl. Acad. Sci. USA 2015, 112, 2271–2280. [Google Scholar] [CrossRef] [PubMed]
- Tanoue, M.; Hirabayashi, Y.; Ikeuchi, H. Global-scale river flood vulnerability in the last 50 years. Sci. Rep. 2016, 6, 36021. [Google Scholar] [CrossRef] [PubMed]
- Brody, S.D.; Zahran, S.; Highfield, W.E.; Grover, H.; Vedlitz, A. Identifying the impact of the built environment on flood damage in Texas. Disasters 2008, 32, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Luu, C.; Von Meding, J.; Kanjanabootra, S.; Pham, D. A Proposed Flood Risk Assessment Method for Central Vietnam. In Proceedings of the 5th International Conference on Building Resilience, Newcastle, Australia, 10–15 July 2015. [Google Scholar]
- WMO. Flood Mapping—Integrated Flood Management Tools Series No. 20; World Meteorological Organization (WMO): Geneva, Switzerland, 2013. [Google Scholar]
- Meyer, V.; Scheuer, S.; Haase, D. A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany. Nat. Hazards 2009, 48, 17–39. [Google Scholar] [CrossRef]
- Finn, M.P.; Thunen, D. Recent literature in cartography and geographic information science. Cartogr. Geogr. Inf. Sci. 2014, 41, 393–410. [Google Scholar] [CrossRef]
- Foudi, S.; Osés-Eraso, N.; Tamayo, I. Integrated spatial flood risk assessment: The case of Zaragoza. Land Use Policy 2015, 42, 278–292. [Google Scholar] [CrossRef]
- Directive 2007/60/EC. On the Assessment and Management of Flood Risks; European Commission: Brussels, Belgium, 2007. [Google Scholar]
- Dewan, A.; Islam, M.M.; Kumamoto, T.; Nishigaki, M. Evaluating Flood Hazard for Land-Use Planning in Greater Dhaka of Bangladesh Using Remote Sensing and GIS Techniques. Water Resour. Manag. 2007, 21, 1601–1612. [Google Scholar] [CrossRef]
- Jongman, B.; Ward, P.J.; Aerts, J.C.J.H. Global exposure to river and coastal flooding: Long term trends and changes. Glob. Environ. Chang. 2012, 22, 823–835. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Van Beek, L.P.H.; Jongman, B.; Ward, P.J.; Bouwman, A. A framework for global river flood risk assessments. Hydrol. Earth Syst. Sci. 2013, 17, 1871–1892. [Google Scholar] [CrossRef]
- De Moel, H.; van Alphen, J.; Aerts, J.C.J.H. Flood maps in Europe methods, availability and use. Nat. Hazards Earth Syst. Sci. 2009, 9, 289–301. [Google Scholar] [CrossRef]
- Ward, P.J.; Marfai, M.A.; Yulianto, F.; Hizbaron, D.R.; Aerts, J.C.J.H. Coastal inundation and damage exposure estimation: A case study for Jakarta. Nat. Hazards 2010, 56, 899–916. [Google Scholar] [CrossRef]
- Budiyono, Y.; Aerts, J.; Brinkman, J.; Marfai, M.A.; Ward, P. Flood risk assessment for delta mega-cities: A case study of Jakarta. Nat. Hazards 2014, 75, 389–413. [Google Scholar] [CrossRef]
- Kron, W. Flood Risk = Hazard • Values • Vulnerability. Water Int. 2005, 30, 58–68. [Google Scholar] [CrossRef]
- De Moel, H.; Jongman, B.; Kreibich, H.; Merz, B.; Penning-Rowsell, E.; Ward, P.J. Flood risk assessments at different spatial scales. Mitig. Adapt. Strateg. Glob. Chang. 2015. [Google Scholar] [CrossRef]
- De Bruijn, K.M.; Klijn, F.; van de Pas, B.; Slager, C.T.J. Flood fatality hazard and flood damage hazard: Combining multiple hazard characteristics into meaningful maps for spatial planning. Nat. Hazards Earth Syst. Sci. 2015, 15, 1297–1309. [Google Scholar] [CrossRef]
- Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Dewan, A. Floods in a Megacity: Geospatial Techniques in Assessing Hazards, Risk and Vulnerability; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kubal, C.; Haase, D.; Meyer, V.; Scheuer, S. Integrated urban flood risk assessment—Adapting a multicriteria approach to a city. Nat. Hazards Earth Syst. Sci. 2009, 9, 1881–1895. [Google Scholar] [CrossRef]
- Scheuer, S.; Haase, D.; Meyer, V. Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: From a starting point view towards an end point view of vulnerability. Nat. Hazards 2011, 58, 731–751. [Google Scholar] [CrossRef]
- Hansson, K.; Danielson, M.; Ekenberg, L.; Buurman, J. Multiple Criteria Decision Making for Flood Risk Management. In Integrated Catastrophe Risk Modeling; Amendola, A., Ermolieva, T., Linnerooth-Bayer, J., Mechler, R., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 32, pp. 53–72. [Google Scholar]
- Tran, P.; Marincioni, F.; Shaw, R.; Sarti, M.; Van An, L. Flood risk management in Central Vietnam: Challenges and potentials. Nat. Hazards 2008, 46, 119–138. [Google Scholar] [CrossRef]
- Razafindrabe, B.H.N.; Kada, R.; Arima, M.; Inoue, S. Analyzing flood risk and related impacts to urban communities in central Vietnam. Mitig. Adapt. Strateg. Glob. Chang. 2012, 19, 177–198. [Google Scholar] [CrossRef]
- Chau, V.N.; Holland, J.; Cassells, S.; Tuohy, M. Using GIS to map impacts upon agriculture from extreme floods in Vietnam. Appl. Geogr. 2013, 41, 65–74. [Google Scholar] [CrossRef]
- Chau, V.N.; Cassells, S.; Holland, J. Economic impact upon agricultural production from extreme flood events in Quang Nam, central Vietnam. Nat. Hazards 2014, 75, 1747–1765. [Google Scholar] [CrossRef]
- Chinh, D.T.; Dung, N.V.; Gain, A.K.; Kreibich, H. Flood Loss Models and Risk Analysis for Private Households in Can Tho City, Vietnam. Water 2017, 9, 313. [Google Scholar] [CrossRef]
- Vu, T.V.; Nguyen, H.T.; Nguyen, T.V.; Nguyen, H.V.; Pham, H.T.T.; Nguyen, L.T. Effects of ENSO on Autumn Rainfall in Central Vietnam. Adv. Meteorol. 2015, 2015, 264373. [Google Scholar] [CrossRef]
- Dang, N.M.; Babel, M.S.; Luong, H.T. Evaluation of flood risk parameters in the Day River Flood Diversion Area, Red River Delta, Vietnam. Nat. Hazards 2010, 56, 169–194. [Google Scholar] [CrossRef]
- Saaty, T.L. What is the Analytic Hierarchy Process? In Mathematical Models for Decision Support; Mitra, G., Greenberg, H., Lootsma, F., Rijkaert, M., Zimmermann, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; Volume 48, pp. 109–121. [Google Scholar]
- De Brito, M.M.; Evers, M. Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Nat. Hazards Earth Syst. Sci. 2016, 16, 1019–1033. [Google Scholar] [CrossRef]
- Bruun, O. Sending the Right Bill to the Right People: Climate Change, Environmental Degradation, and Social Vulnerabilities in Central Vietnam. Weather Clim. Soc. 2012, 4, 250–262. [Google Scholar] [CrossRef]
- Luu, C.; Von Meding, J.; Kanjanabootra, S. Assessing flood hazard using flood marks and analytic hierarchy process approach: A case study for the 2013 flood event in Quang Nam, Vietnam. Nat. Hazards 2018, 90, 1031–1050. [Google Scholar] [CrossRef]
- Nam, D.H.; Mai, D.T.; Udo, K.; Mano, A. Short-term flood inundation prediction using hydrologic-hydraulic models forced with downscaled rainfall from global NWP. Hydrol. Process. 2014, 28, 5844–5859. [Google Scholar] [CrossRef]
- Duc Le, A.; Thi Thu Vu, L. Climate Change’s Impact on Natural Hazards in Quang Nam Province, Mid-Central Vietnam. In On the Frontiers of Climate and Environmental Change; Bruun, O., Casse, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 91–98. [Google Scholar]
- Ramanathan, R. A note on the use of the analytic hierarchy process for environmental impact assessment. J. Environ. Manag. 2001, 63, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Analytic Hierarchy Process and Expert Choice: Benefits and limitations. OR Insight 2009, 22, 201–220. [Google Scholar] [CrossRef]
- Koczkodaj, W.W.; Magnot, J.P.; Mazurek, J.; Peters, J.F.; Rakhshani, H.; Soltys, M.; Strzałka, D.; Szybowski, J.; Tozzi, A. On normalization of inconsistency indicators in pairwise comparisons. Int. J. Approx. Reason. 2017, 86, 73–79. [Google Scholar] [CrossRef]
- Schmoldt, D.; Kangas, J.; Mendoza, G.A. Basic Principles of Decision Making in Natural Resources and the Environment. In The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making; Schmoldt, D., Kangas, J., Mendoza, G., Pesonen, M., Eds.; Springer: Dordrecht, The Netherlands, 2001; Volume 3, pp. 1–13. [Google Scholar]
- Carmone, F.J., Jr.; Kara, A.; Zanakis, S.H. A Monte Carlo investigation of incomplete pairwise comparison matrices in AHP. Eur. J. Oper. Res. 1997, 102, 538–553. [Google Scholar] [CrossRef]
- Harker, P.T. Incomplete pairwise comparisons in the analytic hierarchy process. Math. Model. 1987, 9, 837–848. [Google Scholar] [CrossRef]
- Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 2013, 10, 56–66. [Google Scholar]
- Chen, K.; Blong, R.; Jacobson, C. MCE-RISK: Integrating multicriteria evaluation and GIS for risk decision-making in natural hazards. Environ. Model. Softw. 2001, 16, 387–397. [Google Scholar] [CrossRef]
- Kokangül, A.; Polat, U.; Dağsuyu, C. A new approximation for risk assessment using the AHP and Fine Kinney methodologies. Saf. Sci. 2017, 91, 24–32. [Google Scholar] [CrossRef]
- Kienberger, S.; Lang, S.; Zeil, P. Spatial vulnerability units—Expert-based spatial modelling of socio-economic vulnerability in the Salzach catchment, Austria. Nat. Hazards Earth Syst. Sci. 2009, 9, 767–778. [Google Scholar] [CrossRef]
- Olson, D.L. Comparison of weights in TOPSIS models. Math. Comput. Model. 2004, 40, 721–727. [Google Scholar] [CrossRef]
- Mojtahedi, S.M.H.; Oo, B.L. Coastal buildings and infrastructure flood risk analysis using multi-attribute decision-making. J. Flood Risk Manag. 2016, 9, 87–96. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Godfrey, A.; Ciurean, R.L.; van Westen, C.J.; Kingma, N.C.; Glade, T. Assessing vulnerability of buildings to hydro-meteorological hazards using an expert based approach—An application in Nehoiu Valley, Romania. Int. J. Disaster Risk Reduct. 2015, 13, 229–241. [Google Scholar] [CrossRef]
- Plattner, T.; Plapp, T.; Hebel, B. Integrating public risk perception into formal natural hazard risk assessment. Nat. Hazards Earth Syst. Sci. 2006, 6, 471–483. [Google Scholar] [CrossRef]
- Zou, Q.; Zhou, J.; Zhou, C.; Song, L.; Guo, J. Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stoch. Environ. Res. Risk Assess. 2012, 27, 525–546. [Google Scholar] [CrossRef]
- Papaioannou, G.; Vasiliades, L.; Loukas, A. Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping. Water Resour. Manag. 2014, 29, 399–418. [Google Scholar] [CrossRef]
- Kandilioti, G.; Makropoulos, C. Preliminary flood risk assessment: The case of Athens. Nat. Hazards 2012, 61, 441–468. [Google Scholar] [CrossRef]
- Li, G.-F.; Xiang, X.-Y.; Tong, Y.-Y.; Wang, H.-M. Impact assessment of urbanization on flood risk in the Yangtze River Delta. Stoch. Environ. Res. Risk Assess. 2013, 27, 1683–1693. [Google Scholar] [CrossRef]
- Maaskant, B.; Jonkman, S.N.; Bouwer, L.M. Future risk of flooding: An analysis of changes in potential loss of life in South Holland (The Netherlands). Environ. Sci. Policy 2009, 12, 157–169. [Google Scholar] [CrossRef]
- Crichton, D. The Risk Triangle. In Natural Disaster Management; Ingleton, J., Ed.; Tudor Rose Holdings Limited: Leicester, UK, 1999; pp. 102–103. [Google Scholar]
- UNISDR. Global Assessment Report on Disaster Risk Reduction. 2015. Available online: https://www.unisdr.org/we/inform/publications/42809 (accessed on 5 June 2017).
- Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.-K.; Allen, S.K.; et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- Kobayashi, Y.; Porter, J.W. Flood Risk Management in the People’s Republic of China: Learning to Live with Flood Risk; Asian Development Bank: Mandaluyong City, Philippines, 2012. [Google Scholar]
- Gain, A.K.; Mojtahed, V.; Biscaro, C.; Balbi, S.; Giupponi, C. An integrated approach of flood risk assessment in the eastern part of Dhaka City. Nat. Hazards 2015, 79, 1499–1530. [Google Scholar] [CrossRef]
- Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A. KULTURisk regional risk assessment methodology for water-related natural hazards—Part 2: Application to the Zurich case study. Hydrol. Earth Syst. Sci. 2015, 19, 1561–1576. [Google Scholar] [CrossRef]
- Boudou, M.; Lang, M.; Vinet, F.; Cœur, D. Comparative hazard analysis of processes leading to remarkable flash floods (France, 1930–1999). J. Hydrol. 2016, 541, 533–552. [Google Scholar] [CrossRef]
- Te Linde, A.H.; Bubeck, P.; Dekkers, J.E.C.; de Moel, H.; Aerts, J.C.J.H. Future flood risk estimates along the river Rhine. Nat. Hazards Earth Syst. Sci. 2011, 11, 459–473. [Google Scholar] [CrossRef]
- Ouma, Y.; Tateishi, R. Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef]
- Penning-Rowsell, E.; Floyd, P.; Ramsbottom, D.; Surendran, S. Estimating Injury and Loss of Life in Floods: A Deterministic Framework. Nat. Hazards 2005, 36, 43–64. [Google Scholar] [CrossRef]
- Terti, G.; Ruin, I.; Gourley, J.J.; Kirstetter, P.; Flamig, Z.; Blanchet, J.; Arthur, A.; Anquetin, S. Toward Probabilistic Prediction of Flash Flood Human Impacts. Risk Anal. 2017. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Tang, Z.; Zeng, G. A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China. Water Resour. Manag. 2011, 25, 3465–3484. [Google Scholar] [CrossRef]
- Peduzzi, P.; Dao, H.; Herold, C.; Mouton, F. Assessing global exposure and vulnerability towards natural hazards: The Disaster Risk Index. Nat. Hazards Earth Syst. Sci. 2009, 9, 1149–1159. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Jongman, B.; Veldkamp, T.; Hallegatte, S.; Bangalore, M.; Ward, P. Disaster Risk, Climate Change, and Poverty: Assessing the Global Exposure of Poor People to Floods and Droughts; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Bouwer, L.M.; Bubeck, P.; Aerts, J.C.J.H. Changes in future flood risk due to climate and development in a Dutch polder area. Glob. Environ. Chang. 2010, 20, 463–471. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. Group Decision Making and the AHP. In The Analytic Hierarchy Process; Golden, B., Wasil, E., Harker, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 59–67. [Google Scholar]
- Whitaker, R.; Adams, W. Developers of Superdecisions Software; Decisions Foundation: Pittsburgh, PA, USA, 2005. [Google Scholar]
- Tran, P.; Shaw, R.; Chantry, G.; Norton, J. GIS and local knowledge in disaster management: A case study of flood risk mapping in Viet Nam. Disasters 2009, 33, 152–169. [Google Scholar] [CrossRef] [PubMed]
- Vojinovic, Z. Flood Risk: The Holistic Perspective—From Integrated to Interactive Planning for Flood Resilience; IWA Publishing: London, UK, 2015. [Google Scholar]
- Luu, C.; Von Meding, J.; Kanjanabootra, S. Flood risk management activities in Vietnam: A study of local practice in Quang Nam province. Int. J. Disaster Risk Reduct. 2018. [Google Scholar] [CrossRef]
- De Brito, M.M.; Evers, M.; Almoradie, A.D.S. Participatory flood vulnerability assessment: A multi-criteria approach. Hydrol. Earth Syst. Sci. 2018, 22, 373–390. [Google Scholar] [CrossRef]








| Component | Criteria | Source |
|---|---|---|
| Flood hazard | Depth | Zou et al. [56], Dewan [22], Foudi et al. [10], Gain et al. [65], Ronco et al. [66] |
| Duration | Boudou et al. [67], Chinh et al. [31] | |
| Flood exposure | Land-use | te Linde et al. [68], Zou et al. [56], Dewan [22], Ouma and Tateishi [69], Gain et al. [65], Ronco et al. [66] |
| Distance to rivers | Penning-Rowsell et al. [70], Dewan [22], Terti et al. [71] | |
| Population density | Wang et al. [72], Peduzzi et al. [73], Zou et al. [56], Dewan [22], Gain et al. [65], Ronco et al. [66] | |
| Flood vulnerability | Poverty rate | Tran et al. [27], Dewan [22], Winsemius et al. [74] |
| Road density | Scheuer et al. [25], Dewan [22], Ronco et al. [66] | |
| Number of doctors and nurses | Scheuer et al. [25], Dewan [22] |
| Component | Criteria | Weight | Sub-Criteria | Weight |
|---|---|---|---|---|
| Flood exposure | Land-use category | 0.135 | Homestead and built-up | 0.670 |
| Agricultural land | 0.201 | |||
| Water bodies | 0.082 | |||
| Forest and vegetation | 0.047 | |||
| Distance to rivers (km) | 0.253 | <1 | 0.608 | |
| 1–2 | 0.229 | |||
| 2–3 | 0.110 | |||
| >3 | 0.053 | |||
| Population density (km2) | 0.612 | <=50 | 0.042 | |
| 51–200 | 0.065 | |||
| 201–500 | 0.114 | |||
| 501–1000 | 0.250 | |||
| >1000 | 0.529 |
| Component | Criteria | Weight | Sub-Criteria | Weight |
|---|---|---|---|---|
| Flood vulnerability | Poverty rate (%) | 0.577 | <5 | 0.062 |
| 5–10 | 0.097 | |||
| 10–20 | 0.160 | |||
| 20–40 | 0.262 | |||
| >40 | 0.419 | |||
| Road density (m/km2) | 0.298 | <20 | 0.438 | |
| 20–50 | 0.256 | |||
| 50–100 | 0.149 | |||
| 100–400 | 0.096 | |||
| >400 | 0.061 | |||
| Number of doctors and nurses | 0.125 | 0 | 0.467 | |
| 1–2 | 0.277 | |||
| 3–4 | 0.160 | |||
| 5–7 | 0.096 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luu, C.; Von Meding, J. A Flood Risk Assessment of Quang Nam, Vietnam Using Spatial Multicriteria Decision Analysis. Water 2018, 10, 461. https://doi.org/10.3390/w10040461
Luu C, Von Meding J. A Flood Risk Assessment of Quang Nam, Vietnam Using Spatial Multicriteria Decision Analysis. Water. 2018; 10(4):461. https://doi.org/10.3390/w10040461
Chicago/Turabian StyleLuu, Chinh, and Jason Von Meding. 2018. "A Flood Risk Assessment of Quang Nam, Vietnam Using Spatial Multicriteria Decision Analysis" Water 10, no. 4: 461. https://doi.org/10.3390/w10040461
APA StyleLuu, C., & Von Meding, J. (2018). A Flood Risk Assessment of Quang Nam, Vietnam Using Spatial Multicriteria Decision Analysis. Water, 10(4), 461. https://doi.org/10.3390/w10040461

