A Methodology for Measuring Microplastic Transport in Large or Medium Rivers
Abstract
:1. Introduction
2. Materials and Methods
Development of a Device for Measuring Microplastic Transport
3. Results
3.1. Final Configuration of the Device
3.2. First Measurements and Sample Processing
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
| EU28+2 | European Union member states and candidate countries |
| ISO | International Organization for Standardization |
| BfG | Bundesanstalt für Gewässerkunde (Federal Institute of Hydrology), Koblenz, Germany |
| ATR-IR | Attenuated total reflection infrared spectroscopy |
| RNQ | The regulated low discharge at Hainburg (94% exceedance duration; time series 1981–2010) equals 980 m3 s−1 |
| MQ | The annual mean discharge at Hainburg (time series 1981–2010) equals 1930 m3 s−1 |
References
- Plastics Europe. Plastics—The Facts 2016, An Analysis of European Plastics Production, Demand and Waste Data; Plastics Europe, Association of Plastic Manufacturers: Brussels, Belgium, 2016. [Google Scholar]
- Barnes, D.K.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Moore, C.; Andrady, A.; Gregory, M.; Takada, H.; Weisberg, S. New directions in plastic debris. Science 2005, 310, 1117. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.C.; Park, B.J.; Palace, V.P. Microplastics in aquatic environments: Implications for Canadian ecosystems. Environ. Pollut. 2016, 218, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Van Cauwenberghe, L.; Vanreusel, A.; Mees, J.; Janssen, C.R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 2013, 182, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Obbard, R.W.; Sadri, S.; Wong, Y.Q.; Khitun, A.A.; Baker, I.; Thompson, R.C. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2014, 2, 315–320. [Google Scholar] [CrossRef]
- Wagner, M.; Scherer, C.; Alvarez-Muñoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; et al. Microplastics in freshwater ecosystems: What we know and what we need to know. Environ. Sci. Eur. 2014, 26. [Google Scholar] [CrossRef] [PubMed]
- Browne, M.A.; Dissanayake, A.; Galloway, T.S.; Lowe, D.M.; Thompson, R.C. Ingested microscopic plastic translocates to the circulatory system of themussel, Mytilus edulis (L.). Environ. Sci. Technol. 2008, 42, 5026–5031. [Google Scholar] [CrossRef] [PubMed]
- Imhof, H.K.; Laforsch, C.; Wiesheu, A.C.; Schmid, J.; Anger, P.M.; Niessner, R.; Ivleva, N.P. Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Res. 2016, 98, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.K.; Paglialonga, L.; Czech, E.; Tamminga, M. Microplastic pollution in lakes and lake shoreline sediments—A case study on Lake Bolsena and Lake Chiusi (central Italy). Environ. Pollut. 2016, 213, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, A.K.; Corsi, S.R.; Mason, S.A. Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology. Environ. Sci. Technol. 2016, 50, 10377–10385. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Faure, F.; Demars, C.; Wieser, O.; Kunz, M.; de Alencastro, L.F. Plastic pollution in Swiss surface waters: Nature and concentrations, interaction with pollutants. Environ. Chem. 2015, 12, 582–591. [Google Scholar] [CrossRef]
- Lechner, A.; Keckeis, H.; Lumesberger-Loisl, F.; Zens, B.; Krusch, R.; Tritthart, M.; Glas, M.; Schludermann, E. The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe^#x2019;s second largest river. Environ. Pollut. 2014, 188, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Mani, T.; Hauk, A.; Walter, U.; Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 2015, 5, 17988. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.; Hoellein, T.J.; Mason, S.A.; Schluep, J.; Kelly, J.J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 2014, 48, 11863–11871. [Google Scholar] [CrossRef] [PubMed]
- Yonkos, L.T.; Friedel, E.A.; Perez-Reyes, A.C.; Ghosal, S.; Arthur, C.D. Microplastics in four estuarine rivers in the Chesapeake Bay, USA. Environ. Sci. Technol. 2014, 48, 14195–14202. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Worch, E.; Knepper, T.P. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environ. Sci. Technol. 2015, 49, 6070–6076. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.A.; Svendsen, C.; Williams, R.J.; Spurgeon, D.J.; Lahive, E. Large microplastic particles in sediments of tributaries of the River Thames, UK—Abundance, sources and methods for effective quantification. Mar. Pollut. Bull. 2017, 114, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Rocher, V.; Tassin, B. Synthetic and non-synthetic anthropogenic fibers in a river under the impact of Paris Megacity: Sampling methodological aspects and flux estimations. Sci. Total Environ. 2018, 618, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, E.J.; Anderson, S.J.; Harvey, G.R.; Miklas, H.P.; Peck, B.B. Polystyrene Spherules in Coastal Waters. Science 1972, 178, 749–750. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Cheng, L. New net for sampling the ocean surface. Mar. Ecol. Prog. Ser. 1981, 5, 225–227. [Google Scholar] [CrossRef]
- Lippiatt, S.; Opfer, S.; Arthur, C. Marine Debris Monitoring and Assessment: Recommendation for Monitoring Debris Trends in the Marine Environment; NOAA Technical Memorandum NOS-OR&R-46; U.S. Department of Commerce: Washington, DC, USA, 2013. [Google Scholar]
- Moore, C.J.; Lattin, G.L.; Zellers, A.F. Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. J. Integr. Coast. Zone Manag. 2011, 11, 65–73. [Google Scholar] [CrossRef]
- Corcoran, P.L. Benthic plastic debris in marine and fresh water environments. Environ. Sci. Process. Impacts 2015, 17, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Moriceau, B.; Gallinari, M.; Lambert, C.; Huvet, A.; Raffray, J.; Soudant, P. Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates. Mar. Chem. 2015, 175, 39–46. [Google Scholar] [CrossRef]
- Kowalski, N.; Reichardt, A.M.; Waniek, J.J. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar. Pollut. Bull. 2016, 109, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.; Hoellein, T.; Sapp, M.; Tagg, A.; Ju-Nam, Y.; Ojeda, J. Microplastic-Associated Biofilms: A Comparison of Freshwater and Marine Environments. In Freshwater Microplastics; Wagner, M., Lambert, S., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Tritthart, M.; Gmeiner, P.; Liedermann, M.; Habersack, H. A meso-scale gravel tracer model for large gravel-bed rivers. J. Appl. Water Eng. Res. 2018. [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Haimann, M.; Liedermann, M.; Lalk, P.; Habersack, H. An integrated suspended sediment transport monitoring and analysis concept. Int. J. Sediment Res. 2014, 29, 135–148. [Google Scholar] [CrossRef]
- Wass, P.D.; Leeks, J.L. Suspended sediment fluxes in the Humber catchment, UK. Hydrol. Process. 1999, 13, 935–953. [Google Scholar] [CrossRef]
- International Standard. ISO 4363 2002, Measurement of Liquid Flow in Open Channels—Methods for Measurement of Characteristics of Suspended Sediment; International Standard: Geneva, Switzerland, 2002. [Google Scholar]
- Edwards, T.; Glysson, G. Field methods for measurement of fluvial sediment. In Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 3, Application of Hydraulics; United States Government Printing Office: Washington, DC, USA, 1999; Chapter C2; p. 89. [Google Scholar]
- Liedermann, M.; Gmeiner, P.; Kreisler, A.; Tritthart, M.; Habersack, H. Insights into bedload transport processes of a large regulated gravel-bed river. Earth Surf. Process. Landf. 2017. [CrossRef]
- Delft Hydraulics. Calibration of BTMA Report M6Q1I; Delft Hydraulics Laboratory: Delft, The Netherlands, 1958. (In Dutch) [Google Scholar]
- Tranter, D.J.; Smith, P.E. Filtration performance. In Monographs on Oceanographic Methodology 2. Zooplankton Sampling; Tranter, D.J., Ed.; UNESCO: Paris, France, 1968; pp. 27–56. [Google Scholar]
- Smith, P.E.; Counts, R.C.; Cutter, R.I. Changes in filtering efficiency of plankton nets due to clogging under tow. ICES J. Mar. Sci. 1968, 32, 232–248. [Google Scholar] [CrossRef]







| Min | Max | Mean | ||
|---|---|---|---|---|
| lowest mesh excluded | Q1276 | 0.83 | 0.99 | 0.91 |
| Q1276—250 µm | 0.84 | 0.95 | 0.90 | |
| Q1276—500 µm | 0.83 | 0.99 | 0.92 | |
| Q3392 | 0.20 | 0.99 | 0.70 | |
| Q3392—250 µm | 0.20 | 0.81 | 0.51 | |
| Q3392—500 µm | 0.49 | 0.99 | 0.78 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liedermann, M.; Gmeiner, P.; Pessenlehner, S.; Haimann, M.; Hohenblum, P.; Habersack, H. A Methodology for Measuring Microplastic Transport in Large or Medium Rivers. Water 2018, 10, 414. https://doi.org/10.3390/w10040414
Liedermann M, Gmeiner P, Pessenlehner S, Haimann M, Hohenblum P, Habersack H. A Methodology for Measuring Microplastic Transport in Large or Medium Rivers. Water. 2018; 10(4):414. https://doi.org/10.3390/w10040414
Chicago/Turabian StyleLiedermann, Marcel, Philipp Gmeiner, Sebastian Pessenlehner, Marlene Haimann, Philipp Hohenblum, and Helmut Habersack. 2018. "A Methodology for Measuring Microplastic Transport in Large or Medium Rivers" Water 10, no. 4: 414. https://doi.org/10.3390/w10040414
APA StyleLiedermann, M., Gmeiner, P., Pessenlehner, S., Haimann, M., Hohenblum, P., & Habersack, H. (2018). A Methodology for Measuring Microplastic Transport in Large or Medium Rivers. Water, 10(4), 414. https://doi.org/10.3390/w10040414

