Implementation of a Two-Source Model for Estimating the Spatial Variability of Olive Evapotranspiration Using Satellite Images and Ground-Based Climate Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Measurements of Climate and Energy Balance Data
2.3. Shuttleworth and Wallace Model Description
2.4. Estimation of Resistances
2.5. Estimation of Available Energy at the Time of the Satellite Overpass
2.6. Instantaneous to Daily Extrapolation of Actual Evapotranspiration
2.7. Image Processing
2.8. Statistical Analysis
3. Results
3.1. Model Validation of Available Energy, Latent Heat Flux and Actual Evapotranspiration
3.2. Sensitivity Analysis
3.3. Spatial Variability of Actual Evapotranspiration
4. Final Remarks
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
List of Symbols
Instantaneous available energy leaving the complete canopy (W m−2) | |
Available energy at the soil surface (W m−2) | |
Percentage of wetted area (%) | |
b | Ratio of estimated to observed values (dimensionless) |
B | Bowen ratio (dimensionless) |
Canopy resistance coefficient (dimensionless) | |
Soil surface resistance coefficient (dimensionless) | |
C | Extinction coefficient of crop for net radiation (dimensionless) |
Specific heat of the air at constant pressure (1013 J kg−1 °K−1) | |
CV | Coefficient of variation (%) |
d | Zero plane displacement of crop with complete canopy cover (LAI = 4) (m) |
Water vapor pressure deficit at the reference height (kPa) | |
Ei | Latent heat flux from soil evaporation (W m−2) |
EF | Reference evapotranspiration fraction (dimensionless) |
ET | Daily actual evapotranspiration (mm d−1) |
ETEC | Daily actual evapotranspiration obtained from de eddy covariance (EC) method (mm d−1) |
Instantaneous actual evapotranspiration computed from the Shuttleworth and Wallace (SW) model (mm h−1) | |
Reference evapotranspiration (mm d−1) | |
Instantaneous reference evapotranspiration (mm h−1) | |
Daily actual evapotranspiration estimated using the SW model (mm d−1) | |
fc | Fractional crop cover (dimensionless) |
Soil heat flux (W m−2) | |
Instantaneous soil heat flux (W m−2) | |
H | Sensible heat flux (W m−2) |
H corrected using the Bowen ratio approach (W m−2) | |
Index of agreement (dimensionless) | |
Kc | Crop coefficient (dimensionless) |
Kcb | basal crop coefficient (dimensionless) |
Ke | soil evaporation coefficient (dimensionless) |
Leaf area index (m2 m−2) | |
Latent heat flux obtained from the EC method (W m−2) | |
Instantaneous LE corrected using the Bowen ratio approach (W m−2) | |
Instantaneous LE estimated using SW (W m−2) | |
MAE | Mean absolute error (dimensionless) |
Total number of observations, | |
Eddy diffusivity decay constant in crop with complete canopy crop cover (dimensionless) | |
Observed values (W m−2 or mm d−1) | |
Mean of the observed values (W m−2 or mm d−1) | |
Estimated values (W m−2 or mm d−1) | |
Pp | precipitation (mm) |
RH | Relative air humidity (%) |
Net radiation (W m−2) | |
Average daily values of net radiation (W m2) | |
Instantaneous net radiation (W m2) | |
Instantaneous net radiation on the surface of the ground (W m−2) | |
Incident short-wave radiation (W m−2) | |
Incoming long-wave radiation (W m−2) | |
Outgoing long-wave radiation (W m−2) | |
R2 | Coefficient of determination (dimensionless) |
Mean boundary layer resistance per unit area of vegetation (s m−1) | |
Bulk boundary layer resistance of the vegetative elements in the canopy (s m−1) | |
Aerodynamic resistance between the canopy source height and reference level (s m−1) | |
Canopy resistance (s m−1) | |
Aerodynamic resistance between the soil and canopy source height (s m−1) | |
Soil surface resistance (s m−1) | |
Mean stomatal resistance (s m−1) | |
Ta | Air temperature (°C) |
Tavg | Average daily values of temperature (°C) |
Latent heat flux from the olive transpiration (W m−2) | |
Superficial temperature (°K) | |
Near surface air temperature (°K) | |
u | Wind speed (m s−1) |
uavg | Average daily values of wind speed (m s−1) |
Zom | Surface roughness (m) |
Roughness length of crop with complete canopy cover (s m−1) | |
Roughness length of soil surface (s m−1) | |
Surface albedo (dimensionless) | |
Instantaneous surface albedo (dimensionless) | |
Effective atmospheric emissivity (dimensionless) | |
Superficial emissivity (dimensionless) | |
Latent heat of vaporization (1013 MJ kg−1), | |
Water density (1000 kg m−3), | |
Stefan-Boltzmann constant (5.67 × 10−8 Wm−2 °K−4) | |
Psychrometric constant (kPa °K−1) | |
Wide-band atmospheric transmissivity (dimensionless) | |
Ψmd | Midday stem water potential (MPa) |
Slope of the saturation vapor pressure curve at the mean temperature (kPa °C−1) |
References
- Ortega-Farías, S.; Irmak, S.; Cuenca, R.H. Special issue on evapotranspiration measurement and modeling. Irrig. Sci. 2009, 28, 1–3. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998. [Google Scholar]
- Er-Raki, S.; Chehbouni, A.; Boulet, G.; Williams, D.G. Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region. Agric. Water Manag. 2010, 97, 1769–1778. [Google Scholar] [CrossRef] [Green Version]
- Er-Raki, S.; Chehbouni, A.; Duchemin, B. Combining Satellite Remote Sensing Data with the FAO-56 Dual Approach for Water Use Mapping in Irrigated Wheat Fields of a Semi-Arid Region. Remote Sens. 2010, 2, 375–387. [Google Scholar] [CrossRef]
- Cammalleri, C.; Ciraolo, G.; Minacapilli, M.; Rallo, G. Evapotranspiration from an Olive Orchard using Remote Sensing-Based Dual Crop Coefficient Approach. Water Resour. Manag. 2013, 27, 4877–4895. [Google Scholar] [CrossRef]
- Paço, T.A.; Pocas, I.; Cunha, M.; Silvestre, J.C.; Santos, F.L.; Paredes, P.; Pereira, L.S. Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations. J. Hydrol. 2014, 519, 2067–2080. [Google Scholar] [CrossRef]
- Martínez-Cob, A.; Faci, J.M. Evapotranspiration of an hedge-pruned olive orchard in a semiarid area of NE Spain. Agric. Water Manag. 2010, 97, 410–418. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Olivari, R.; Ortega-Farías, S.; Poblete-Echeverría, C. Partitioning of net radiation and evapotranspiration over a superintensive drip-irrigated olive orchard. Irrig. Sci. 2016, 34, 17–31. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S. Estimating crop coefficients from fraction of ground cover and height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef]
- Pôças, I.; Paco, T.A.; Paredes, P.; Cunha, M.; Pereira, L.S. Estimation of Actual Crop Coefficients Using Remotely Sensed Vegetation Indices and Soil Water Balance Modelled Data. Remote Sens. 2015, 7, 2373–2400. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Hoedjes, J.; Ezzahar, J.; Duchemin, B.; Jacob, F. Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET. Agric. Water Manag. 2008, 95, 309–321. [Google Scholar] [CrossRef]
- Anadranistakis, M.; Liakatas, A.; Kerkides, P.; Rizos, S.; Gavanosis, J.; Poulovassilis, A. Crop water requirements model tested for crops grown in Greece. Agric. Water Manag. 2000, 45, 297–316. [Google Scholar] [CrossRef]
- Ortega-Farías, S.; Poblete-Echeverría, C.; Brisson, N. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements. Agric. For. Meteorol. 2010, 150, 276–286. [Google Scholar] [CrossRef]
- Testi, L.; Villalobos, F.J.; Orgaz, F. Evapotranspiration of a young irrigated olive orchard in southern Spain. Agric. For. Meteorol. 2004, 121, 1–18. [Google Scholar] [CrossRef]
- Were, A.; Villagarcía, L.; Domingo, F.; Moro, M.J.; Dolman, A.J. Aggregating spatial heterogeneity in a bush vegetation patch in semi-arid SE Spain: A multi-layer model versus a single-layer model. J. Hydrol. 2008, 349, 156–167. [Google Scholar] [CrossRef]
- Zhou, M.C.; Ishidaira, H.; Hapuarachchi, H.P.; Magome, J.; Kiem, A.S.; Takeuchi, K. Estimating potential evapotranspiration using Shuttleworth–Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin. J. Hydrol. 2006, 327, 151–173. [Google Scholar] [CrossRef]
- Kato, T.; Kamichika, M. Determination of a crop coefficient for evapotranspiration in a sparse sorghum field. Irrig. Drain. 2006, 55, 165–175. [Google Scholar] [CrossRef]
- Gardiol, J.M.; Serio, L.A.; Della Maggiora, A.I. Modelling evapotranspiration of corn (Zea mays) under different plant densities. J. Hydrol. 2003, 271, 188–196. [Google Scholar] [CrossRef]
- Zhang, B.; Kang, S.; Li, F.; Zhang, L. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China. Agric. For. Meteorol. 2008, 148, 1629–1640. [Google Scholar] [CrossRef]
- Ortega-Farías, S.; Carrasco, M.; Olioso, A.; Acevedo, C.; Poblete, C. Latent heat flux over Cabernet Sauvignon vineyard using the Shuttleworth and Wallace model. Irrig. Sci. 2006, 25, 161–170. [Google Scholar] [CrossRef]
- Zhang, B.; Kang, S.; Zhang, L.; Tong, L.; Du, T.; Li, F.; Zhang, J. An evapotranspiration model for sparsely vegetated canopies under partial root-zone irrigation. Agric. For. Meteorol. 2009, 149, 2007–2011. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S.; Li, F.; Du, T.; Tong, L.; Kang, S. Comparison of dual crop coefficient method and Shuttleworth–Wallace model in evapotranspiration partitioning in a vineyard of northwest China. Agric. Water Manag. 2015, 160, 41–56. [Google Scholar] [CrossRef]
- Ortega-Farías, S.; Lopez-Olivari, R. Validation of a Two-Layer Model to Estimate Latent Heat Flux and Evapotranspiration in a Drip-Irrigated Olive Orchard. Trans. ASABE 2012, 55, 1169–1178. [Google Scholar] [CrossRef]
- Brenner, A.J.; Incoll, L.D. The effect of clumping and stomatal response on evaporation from sparsely vegetated shrublands. Agric. For. Meteorol. 1997, 84, 187–205. [Google Scholar] [CrossRef]
- Ortega-Farías, S.; Ortega-Salazar, S.; Poblete, T.; Kilic, A.; Allen, R.; Poblete-Echeverría, C.; Ahumada-Orellana, L.; Zuniga, M.; Sepulveda, D. Estimation of energy balance components over a drip-irrigated olive orchard using thermal and multispectral cameras placed on a helicopter-based unmanned aerial vehicle (UAV). Remote Sens. 2016, 8, 638. [Google Scholar] [CrossRef]
- Ortega-Farías, S.; Ortega-Salazar, S.; Aguilar, R.; De la Fuente, D.; Fuentes, F. Evaluation of a model to estimate net radiation over a drip-irrigated olive orchard using landsat satellite images. Acta Hortic. 2014, 1057, 309–314. [Google Scholar] [CrossRef]
- Carrasco-Benavides, M.; Ortega-Farías, S.; Lagos, L.O.; Kleissl, J.; Morales-Salinas, L.; Kilic, A. Parameterization of the satellite-based model (METRIC) for the estimation of instantaneous surface energy balance components over a drip-irrigated vineyard. Remote Sens. 2011, 6, 11342–11371. [Google Scholar] [CrossRef]
- Cuenca, R.H.; Ciotti, S.P.; Hagimoto, Y. Application of Landsat to Evaluate Effects of Irrigation Forbearance. Remote Sens. 2011, 5, 3776–3802. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. A modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal framework. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. Assessing the impact of end-member selection on the accuracy of satellite-based spatial variability models for actual evapotranspiration estimation. Water Resour. Res. 2013, 49, 2601–2618. [Google Scholar] [CrossRef]
- Dhungel, R.; Allen, R.G.; Trezza, R.; Robison, C.W. Comparison of Latent Heat Flux Using Aerodynamic Methods and Using the Penman-Monteith Method with Satellite-Based Surface Energy Balance. Remote Sens. 2014, 6, 8844–8877. [Google Scholar] [CrossRef]
- Tognetti, R.; D’Andria, R.; Sacchi, R.; Lavini, A.; Morelli, G.; Alvino, A. Deficit irrigation affects seasonal changes in leaf physiology and oil quality of Olea europaea (cultivars Frantoio and Leccino). Ann. Appl. Biol. 2007, 150, 169–186. [Google Scholar] [CrossRef]
- Pérez-López, D.; Gijón, M.C.; Marino, J.; Moriana, A. Water relation response to soil chilling of six olive (Olea europaea L.) cultivars with different frost resistance. Span. J. Agric. Res. 2010, 8, 780–789. [Google Scholar] [CrossRef]
- Dichio, B.; Xiloyannis, C.; Sofo, A.; Montanaro, G. Osmotic regulation in leaves and roots of olive trees during a water deficit and rewatering. Tree Physiol. 2006, 26, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Poblete-Echeverría, C.; Sepúlveda-Reyes, D.; Ortega-Farías, S. Effect of height and time lag on the estimation of sensible heat flux over a drip-irrigated vineyard using the surface renewal (SR) method across distinct phenological stages. Agric. Water Manag. 2014, 141, 74–83. [Google Scholar] [CrossRef]
- Shao, C.; Chen, J.; Li, L.; Xu, W.; Chen, S.; Gwen, T.; Xu, J.; Zhang, W. Spatial variability in soil heat flux at three Inner Mongolia steppe ecosystems. Agric. For. Meteorol. 2008, 148, 1433–1443. [Google Scholar] [CrossRef]
- Schotanus, P.; Nieuwstadt, F.T.M.; de Bruin, H.A.R. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound.-Layer Meteorol. 1983, 26, 81–93. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops—An energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Storey, J.; Scaramuzza, P.; Schmidt, G.; Barsi, J. Landsat 7 scan line corrector-off gap-filled product development. In Proceedings of the Pecora 16 Global Priorities in Land Remote Sensing, Sioux Falls, SD, USA, 23–27 October 2005. [Google Scholar]
- Zeng, C.; Shen, H.; Zhang, L. Recovering missing pixels for Landsat ETM plus SLC-off imagery using multi-temporal regression analysis and a regularization method. Remote Sens. Environ. 2013, 131, 182–194. [Google Scholar] [CrossRef]
- Spiliotopoulos, M.; Holden, N.M.; Loukas, A. Mapping evapotranspiration coefficients in a temperate maritime climate using the metric model and landsat TM. Water 2017, 9, 23. [Google Scholar] [CrossRef]
- Reyes-González, A.; Kjaersgaard, J.; Trooien, T.; Hay, C.; Ahiablame, L. Comparative Analysis of METRIC Model and Atmometer Methods for Estimating Actual Evapotranspiration. Int. J. Agron. 2017, 2017, 3632501. [Google Scholar] [CrossRef]
- Jimenez-Bello, M.A.; Castel, J.R.; Testi, L.; Intrigliolo, D.S. Assessment of a Remote Sensing Energy Balance Methodology (SEBAL) Using Different Interpolation Methods to Determine Evapotranspiration in a Citrus Orchard. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1465–1477. [Google Scholar] [CrossRef]
- Song, L.; Liu, S.; Kustas, W.P.; Zhou, J.; Xu, Z.; Xia, T.; Li, M. Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agric. For. Meteorol. 2016, 230, 8–19. [Google Scholar] [CrossRef]
- Serra, P.; Salvati, L.; Queralt, E.; Pin, C.; Gonzalez, O.; Pons, X. Estimating Water Consumption and Irrigation Requirements in a Long-Established Mediterranean Rural Community by Remote Sensing and Field Data. Irrig. Drain. 2016, 65, 578–588. [Google Scholar] [CrossRef]
- Mayer, D.G.; Butler, D.G. Statistical validation. Ecol. Model. 1993, 68, 21–32. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the Evaluation and Comparison of Models. J. Geophys. Res. Oceans 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
- Williams, D.G.; Cable, W.; Hultine, K.; Hoedjes, J.; Yepez, E.A.; Simonneaux, V.; Er-Raki, S.; Boulet, G.; de Bruin, H.; Chehbouni, A.; et al. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric. For. Meteorol. 2004, 125, 241–258. [Google Scholar] [CrossRef]
- Ezzahar, J.; Chehbouni, A.; Hoedjes, J.C.B.; Er-Raki, S.; Chehbouni, A.; Boulet, G.; Bonnefond, J.M.; de Bruin, H.A.R. The use of the scintillation technique for monitoring seasonal water consumption of olive orchards in a semi-arid region. Agric. Water Manag. 2007, 89, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Villalobos, F.J.; Testi, L.; Orgaz, F.; García-Tejera, O.; López-Bernal, Á.; Victoria Gonzalez-Dugo, M.; Ballester-Lurbe, C.; Ramon Castel, J.; Jose Alarcon-Cabanero, J.; Nicolas-Nicolas, E.; et al. Modelling canopy conductance and transpiration of fruit trees in Mediterranean areas: A simplified approach. Agric. For. Meteorol. 2013, 171, 93–103. [Google Scholar] [CrossRef]
- Testi, L.; Villalobos, F.J.; Orgaz, F.; Fereres, E. Water requirements of olive orchards: I simulation of daily evapotranspiration for scenario analysis. Irrig. Sci. 2006, 24, 69–76. [Google Scholar] [CrossRef]
- Lee, X.; Black, T.A. Atmospheric turbulence within and above a douglas-fir stand. Part II: Eddy fluxes of sensible heat and water vapour. Bound.-Layer Meteorol. 1993, 64, 369–389. [Google Scholar] [CrossRef]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef]
- Leuning, R.; van Gorsel, E.; Massman, W.J.; Isaac, P.R. Reflections on the surface energy imbalance problem. Agric. For. Meteorol. 2012, 156, 65–74. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Liu, H.; Foken, T. A modified Bowen ratio method to determine sensible and latent heat fluxes. Meteorol. Z. 2001, 10, 71–80. [Google Scholar] [CrossRef]
- De Teixeira, A.H.C.; Bastiaanssen, W.G.M.; Ahmad, M.D.; Bos, M.G. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil. Agric. For. Meteorol. 2009, 149, 462–476. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Lu, L.; Mao, D.; Jia, L. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements. Hydrol. Earth Syst. Sci. 2007, 11, 769–783. [Google Scholar] [CrossRef]
Date | Day of Year | Overpass Time | Scene Cloud Cover | Phenological Stages |
---|---|---|---|---|
(dd-mm-yy) | (DOY) | (UTC) | (%) | |
4/02/2009 | 35 | 2:24:02 p.m. | 1 | FC |
20/02/2009 | 51 | 2:24:12 p.m. | 2 | FC |
3/11/2009 | 307 | 2:24:42 p.m. | 7 | F |
5/12/2009 | 339 | 2:25:05 p.m. | 21 | FS |
21/12/2009 | 355 | 2:25:21 p.m. | 1 | PH |
6/01/2010 | 6 | 2:25:38 p.m. | 1 | PH |
22/01/2010 | 22 | 2:25:52 p.m. | 0 | PH |
DOY | Date | RH | Ta | U | ||
---|---|---|---|---|---|---|
(mm d−1) | (mm h−1) | (%) | (°C) | (m s−1) | ||
35 | 4/02/2009 | 7.88 | 0.56 | 51.94 | 22.91 | 0.81 |
51 | 20/02/2009 | 6.88 | 0.52 | 54.16 | 17.92 | 4.11 |
307 | 3/11/2009 | 5.13 | 0.54 | 58.85 | 14.12 | 2.33 |
339 | 5/12/2009 | 6.47 | 0.57 | 56.12 | 16.36 | 1.17 |
355 | 21/12/2009 | 6.69 | 0.69 | 47.6 | 21.29 | 2.69 |
6 | 6/01/2010 | 7.84 | 0.6 | 53.53 | 21.33 | 2.69 |
22 | 22/01/2010 | 7.75 | 0.61 | 52.99 | 22.17 | 1.29 |
Mean | 6.95 | 0.58 | 53.6 | 19.44 | 2.16 | |
D.E. | 0.99 | 0.06 | 3.5 | 3.33 | 1.15 |
Variable | RMSE | MAE | b | t-Test | |
---|---|---|---|---|---|
(W m−2) | 39 | 32 | 0.79 | 0.96 | F |
(W m−2) | 33 | 27 | 0.5 | 0.92 | F |
(W m−2) | 25 | 21 | 0.82 | 0.96 | F |
(W m−2) | 26 | 20 | 0.8 | 0.88 | F |
(mm d−1) | 0.31 | 0.28 | 0.95 | 0.90 | F |
Variables | Symbol | Parameters | 30% | −30% |
---|---|---|---|---|
Extinction coefficient of crop for net radiation (dimensionless) | 0.66 * | 0.09 | 0.53 | |
Zero plane displacement of crop with complete canopy cover (LAI = 4) (m) | 2.01 * | −0.26 | 3.29 | |
Leaf Area Index (m2 m−2) | 1.29 * | 13.93 | −14.52 | |
Eddy diffusivity decay constant in crop with complete canopy crop cover (dimensionless) | 2.5 * | 2.16 | −0.95 | |
Mean boundary layer resistance per unit area of vegetation (s m−1) | 25 * | 1.87 | −1.44 | |
Mean stomatal resistance (s m−1) | 235 * | −13.06 | 19.96 | |
Aerodynamic resistance between canopy source height and reference level (s m−1) | ** | 4.51 | −4.45 | |
Bulk boundary layer resistance of the vegetative elements in the canopy (s m−1) | ** | 1.87 | −1.44 | |
Aerodynamic resistance between the substrate and canopy source height (s m−1) | ** | 1.99 | −1.61 | |
Bulk stomatal resistance of the canopy (s m−1) | ** | −12.82 | 20.3 | |
Surface resistance of the substrate (s m−1) | 2000 * | −3.19 | 5.93 | |
Instantaneous net radiation (W m−2) | ** | 20.60 | −20.03 | |
Instantaneous Soil heat flux (W m−2) | ** | −2.18 | 2.75 | |
Instantaneous available energy (W m−2) | ** | 17.96 | −17.39 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-Peñailillo, F.; Ortega-Farías, S.; Acevedo-Opazo, C.; Fonseca-Luengo, D. Implementation of a Two-Source Model for Estimating the Spatial Variability of Olive Evapotranspiration Using Satellite Images and Ground-Based Climate Data. Water 2018, 10, 339. https://doi.org/10.3390/w10030339
Fuentes-Peñailillo F, Ortega-Farías S, Acevedo-Opazo C, Fonseca-Luengo D. Implementation of a Two-Source Model for Estimating the Spatial Variability of Olive Evapotranspiration Using Satellite Images and Ground-Based Climate Data. Water. 2018; 10(3):339. https://doi.org/10.3390/w10030339
Chicago/Turabian StyleFuentes-Peñailillo, Fernando, Samuel Ortega-Farías, César Acevedo-Opazo, and David Fonseca-Luengo. 2018. "Implementation of a Two-Source Model for Estimating the Spatial Variability of Olive Evapotranspiration Using Satellite Images and Ground-Based Climate Data" Water 10, no. 3: 339. https://doi.org/10.3390/w10030339
APA StyleFuentes-Peñailillo, F., Ortega-Farías, S., Acevedo-Opazo, C., & Fonseca-Luengo, D. (2018). Implementation of a Two-Source Model for Estimating the Spatial Variability of Olive Evapotranspiration Using Satellite Images and Ground-Based Climate Data. Water, 10(3), 339. https://doi.org/10.3390/w10030339