Land Use and Land Cover Changes (LULCC), a Key to Understand Soil Erosion Intensities in the Maritsa Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Rainfall Erosivity Factor (R-Factor)
2.2.2. Soil Erodibility Factor (K-Factor)
2.2.3. Slope Length and Steepness Factor (LS-Factor)
2.2.4. Cover Management Factor (C-factor)
2.2.5. Land Support Practice Factor (P-factor)
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Panagos, P.; Karydas, C.G.; Gitas, I.Z.; Montanarella, L. Monthly soil erosion monitoring based on remotely sensed biophysical parameters: A case study in Strymonas river basin towards a functional pan-European service. Int. J. Digit. Earth 2012, 5, 461–487. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Lim, K.J.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.; et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017, 7, 4175. [Google Scholar] [CrossRef] [PubMed]
- Konukçu, F.; Albut, S.; Altürk, B. Land use/land cover change modelling of Ergene River Basin in western Turkey using CORINE land use/land cover data. Agron. Res. 2017, 15, 435–443. [Google Scholar]
- Nojarov, P. Circulation factors affecting precipitation over Bulgaria. Theor. Appl. Climatol. 2017, 127, 87–101. [Google Scholar] [CrossRef]
- Leh, M.; Bajwa, S.; Chaubey, I. Impact of land use change on erosion risk: An integrated remote sensing, geopraphic information system and modeling methodology. Land Degrad. Dev. 2013, 24, 409–421. [Google Scholar] [CrossRef]
- Erol, A.; Koşkan, Ö.; Başaran, M.A. Socioeconomic modifications of the universal soil loss equation. Solid Earth 2015, 6, 1025–1035. [Google Scholar] [CrossRef]
- Boardman, J.; Parson, A.J.; Holland, R.; Holmes, P.J.; Washington, R. Development of badlands and gullies in the Sneeuberg, Great Karoo, South Africa. Catena 2003, 50, 165–184. [Google Scholar] [CrossRef]
- Morris, G.L.; Fan, J. Reservoir Sedimentation Handbook; McGraw Hill: New York, NY, USA, 1997. [Google Scholar]
- Zang, X.C.; Liu, W.Z.; Zheng, F.L. Simulating site-specific impacts of climate change on soil erosion and surface hydrology in southern Loess Plateau of China. Catena 2009, 79, 237–242. [Google Scholar] [CrossRef]
- Sharma, A.; Tiwari, K.; Bhadoria, P.B.S. Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environ. Monit. Assess. 2011, 173, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Quan, B.; Romkens, M.; Li, R.; Wang, F.; Chen, J. Effect of land use and land cover change on soil erosion and the spatio-temporal variation in Liupan Mountain Region, southern Ningxia, China. Front. Environ. Sci. Eng. 2011, 5, 564–572. [Google Scholar] [CrossRef]
- Zare, M.; Mohammady, M.; Pradha, N.B. Modeling the effect of land use and climate change scenarios on future soil loss rate in Kasilian watershed of northern Iran. Environ. Earth Sci. 2017, 76, 305. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains; Agriculture Handbook No. 282; U.S. Department of Agriculture: Washington, DC, USA, 1965.
- Williams, J.R. Sediment Yield Prediction with Universal Equation Using Runoff Energy Factor; Present & Prospective Technology for Predicting Sediment Yield and Sources ARS-S-40; United States Department of Agriculture (USDA): Washington, DC, USA, 1975.
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture Handbook No. 703; USDA: Washington, DC, USA, 1997.
- Lee, G.S.; Lee, K.H. Scaling effect for estimating soil loss in the RUSLE model using remotely sensed geospatial data in Korea. Hydrol. Earth Syst. Sci. Discuss. 2006, 3, 135–157. [Google Scholar] [CrossRef]
- Rahmati, O.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Feizizadeh, B. Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework. Sci. Total Environ. 2017, 579, 913–927. [Google Scholar] [CrossRef] [PubMed]
- Hayas, A.; Vanwalleghem, T.; Laguna, A.; Peña, A.; Giráldez, J.V. Reconstructing long-term gully dynamics in Mediterranean agricultural areas. Hydrol. Earth Syst. Sci. 2017, 21, 235–249. [Google Scholar] [CrossRef]
- Gessesse, B.; Bewket, W.; Bràuning, A. Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degrad. Dev. 2015, 26, 711–724. [Google Scholar] [CrossRef]
- Selkimäki, M.; González-Olabarria, J.R. Assessing gully erosion occurrence in forest lands in Catalonia (Spain). Land Degrad. Dev. 2017, 28, 616–627. [Google Scholar] [CrossRef]
- Bhandari, K.P.; Damsawasdi, R. Sensitivity analysis of soil erosion on impacts of land use landcover change in Phewa watershed. Int. J. Curr. Eng. Technol. 2014, 4, 1–8. [Google Scholar]
- Özşahin, E. Ergene Havzasında (Trakya) arazi kullanımı ve arazi örtüsü değişikliklerinin erozyon üzerine etkileri. Anadolu Tarım Bilim. Derg. 2016, 31, 117–126. [Google Scholar] [CrossRef]
- Martinez-Casasnovas, J.A.; Anto’n-Ferna’ndez, C.; Ramos, M.C. Sediment production in large gullies of the Mediterranean area (NE Spain) from high-resolution digital elevation models and geographical information systems analysis. Earth Surf. Process. Landf. 2003, 28, 443–456. [Google Scholar] [CrossRef]
- Zhang, X.C.; Nearing, M.A. Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklohoma. Catena 2005, 61, 185–195. [Google Scholar] [CrossRef]
- Boardman, J.B. Damage to property by runoff from agricultural land, South Downs, southern England 1976–1993. Geogr. J. 1995, 161, 177–191. [Google Scholar] [CrossRef]
- Williams, J.; Nearing, M.A.; Nicks, A.; Skidmore, E.; Valentine, C.; King, K.; Savabi, R. Using soil erosion models for global change studies. J. Soil Water Conserv. 1996, 51, 381–385. [Google Scholar]
- Van-Oost, K.; Grovers, G.; Desmet, P.J.J. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landsc. Ecol. 2000, 15, 579–591. [Google Scholar] [CrossRef]
- Nearing, M.A. Potential changes in rainfall erosivity in the U.S. with climate change during the 21st century. J. Soil Water Conserv. 2001, 56, 229–232. [Google Scholar]
- Poesem, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Impartoance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Rousseva, S. Factors and rates of soil erosion in the Balkan Peninsula. In Proceedings of the International Conference “Ecology—Interdisciplinary Science and Practice”, Sofia, Bulgaria, 25–26 October 2012; pp. 43–47. [Google Scholar]
- Milevski, I.; Ivanova, E. Erosion potential modeling of the territory of municipalities Pehchevo and Simitli using Remote Sensing data. In Proceedings of the Safety SES-2013 from the Conference Space, Ecology, Sofia, Bulgaria, 20–22 November 2013. [Google Scholar]
- Blinkov, I. The Balkans: The most erosive part of Europe? Glas. Sumar. Fak. 2015, 111, 9–20. [Google Scholar] [CrossRef]
- Rousseva, S.; Malinov, I.; Stefanova, V. Soil erosion risk assessments using GIS technologies—Bulgarian experience. Bulg. J. Agric. Sci. 2016, 22, 205–208. [Google Scholar]
- Ziyan, Y.; Lijuan, Z.; Shihao, T.; Xiaxiang, L.; Tiantian, H. The basic characteristics and spatial pattern of global cultivated land change since the 1980s. J. Geogr. Sci. 2017, 27, 771–785. [Google Scholar] [CrossRef]
- Kibaroglu, A. Meriç nehir havzası sınıraşan su politikalari. In Proceedings of the 5. Dünya Su Forumu Türkiye Bölgesel Su Toplantıları, Taşkın Konferansı Bildiri Kitabı, Edirne, Türkiye, 7–8 August 2008; pp. 1–11. (In Turkish). [Google Scholar]
- Artinyan, E.; Habets, F.; Noilhan, J.; Ledoux, E.; Dimitrov, D.; Martin, E.; Le Moigne, P. Modelling the water budget and the riverflows of the Maritsa basin in Bulgaria. Hydrol. Earth Syst. Sci. 2008, 12, 21–37. [Google Scholar] [CrossRef]
- Yıldız, D.; Özbay, Ö.; Yıldırım, E.; Çakmak, C.; Soylu, N. Meriç Havzasında Uluslararası su Yönetimi; Rapor No: 2; Hydropolitics Academy: Ankara, Turkey, 2014. (In Turkish) [Google Scholar]
- Özdemir, N.; Öztürk, E.; Kop, Ö.T.; Ekberli, İ. Effects of organic and inorganic amendments on soil erodibility. Eurasian J. Soil Sci. 2015, 4, 266–271. [Google Scholar] [CrossRef]
- Wischmeier, W.H. Use and misuse of the universal soil loss equation. J. Soil Water Conserv. 1978, 31, 5–9. [Google Scholar]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadić, P.M.; Michaelides, S.; Hrabalíková, M.; Olsen, P.; et al. Rainfall erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Ballabio, C. Mapping monthly rainfall erosivity in Europe. Sci. Total Environ. 2017, 579, 1298–1315. [Google Scholar] [CrossRef] [PubMed]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agriculture Handbook No: 537; USDA: Washington, DC, USA, 1978.
- Arnoldus, H.M.J. An approximation of the rainfall factor in the Universal Soil Loss Equation. In Assessment of Erosion; De Boodt, M., Gabriels, D., Eds.; Chichester: New York, NY, USA, 1980; pp. 127–132. [Google Scholar]
- Vijith, H.; Seling, L.W.; Dodge-Wan, D. Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, northern Borneo. Environ. Dev. Sustain. 2017, 1–20. [Google Scholar] [CrossRef]
- Doğan, O.; Küçükçakar, N.; Cebel, H.; Akgül, S. Türkiye Büyük Toprakları “K” Faktörleri; Köy Hizmetleri Genel Müdürlüğü Araştırma Enstitüsü Müdürlüğü Yayınları: Ankara, Turkey, 2000. (In Turkish) [Google Scholar]
- Rousseva, S.; Stefanova, V. Assessment and mapping of soil erodibility and rainfall erosivity in Bulgaria. In Proceedings of the BALWOIS 2006 Conference on Water Observation and Information System for Decision Support, Ohrid, Republic of Macedonia, 23–26 May 2006; pp. 28–29. [Google Scholar]
- Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 2014, 479–480, 189–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunçay, T.; Bayramin, I.; Atalay, F.; Unver, I. Assessment of inverse distance weighting (IDW) interpolation on spatial variability of selected soil properties in the Cukurova Plain. J. Agric. Sci. 2016, 22, 377–384. [Google Scholar]
- Panagos, P.; Borrelli, P.; Meusburger, K. A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences 2015, 5, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Moore, I.D.; Burch, G.J. Physical basis of the length slope factor in the Universal Soil Loss Equation. Soil Sci. Soc. Am. 1986, 50, 1294–1298. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital Terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, C.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at European scale. Land Use Policy 2015, 48C, 38–50. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised Universal Soil Loss Equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Panagos, P.; Borrelli, P.; Meusburger, K.; van der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European Scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Bakker, M.M.; Govers, G.; Doorn, A.; Quetier, F.; Chouvardas, D.; Rounsevell, M. The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology 2008, 98, 213–226. [Google Scholar] [CrossRef]
- Sigalos, G.; Loukaidi, V.; Dasaklis, S.; Alexouli, L.A. Assessment of the quantity of the material transported downstream of Sperchios River, Central Greece. In Proceedings of the 12th International Congress, Bulletin of the Geological Society of Greece, Patras, Greece, 19–22 May 2010. [Google Scholar]
- Ferreira, V.; Samora-Arvela, A.; Panagopoulos, T. Soil erosion vulnerability under scenarios of climate land-use changes after the development of a large reservoir in a semi-arid area. J. Environ. Plan. Manag. 2016, 59, 1238–1256. [Google Scholar] [CrossRef]
- Bosco, C.; Rigo, D.; Dewitte, O.; Poesen, J.; Panagos, P. Modelling soil erosion at European scale: Towards harmonization and reproducibility. Nat. Hazards Earth Syst. Sci. 2015, 15, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Rulli, M.C.; Offeddu, L.; Santini, M. Modeling post-fire water erosion mitigation strategies. Hydrol. Earth Syst. Sci. 2013, 17, 2323–2337. [Google Scholar] [CrossRef]
- Vijith, H.; Seling, L.W.; Dodge-Wan, D. Effect of cover management factor in quantification of soil loss: Case study of Sungai Akah subwatershed, Baram River basin Sarawak, Malaysia. Geocarto Int. 2017, 33, 505–521. [Google Scholar] [CrossRef]
- Hassan, H.A.; Kumar, P.; Kakosimos, K.E. Flux estimation of fugitive particulate matter emissions from loose Calcisols at construction sites. Atmos. Environ. 2016, 141, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Neal, M.; Nearing, M.A.; Vining, R.; Southworth, J.; Pfeifer, A. Climate change impacts on soil erosion in Midwest United States with changes in crop management. Catena 2005, 61, 165–184. [Google Scholar] [CrossRef]
- Litschert, S.E.; Theobald, D.M.; Brown, T.C. Effects of climate change and wildfire on soil loss in the southern Rockies Ecoregion. Catena 2014, 118, 206–219. [Google Scholar] [CrossRef]
- Zhang, B.; He, C.; Burnham, M.; Zhang, L. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Sci. Total Environ. 2016, 539, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Lavalle, C.; Micale, F.; Houston, T.D.; Camia, A.; Hiederer, R.; Lazar, C.; Conte, C.; Amatulli, G.; Genovese, G. Climate change in Europe. 3. Impact on agriculture and forestry. Agron. Sustain. Dev. 2009, 29, 433–446. [Google Scholar] [CrossRef]
- Radeva, S.; Alexandrov, V. Climate variability and change over the Balkan Peninsula and related impacts on sunflower. In Climate Variability, Modeling Tools and Agricultural Decision-Making; Utset, A., Ed.; Nova Science Publishers: New York, NY, USA, 2009. [Google Scholar]
- Nikulin, G.; Kjellström, E.; Hansson, U.; Strandberg, G.; Ullerstig, A. Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus 2011, 63, 41–55. [Google Scholar] [CrossRef]
- Stoinova, V.; Rousseva, S.; Malinov, I. Geographic information system for land capability evaluation and mapping supporting erosion preventive land use. In Proceedings of the Second European SCGIS Conference, “Conservation of Natural and Cultural Heritage for Sustainable Development: GIS-Based Approach”, Sofia, Bulgaria, 24 September 2003. [Google Scholar]
- The General Directorate of State Hydraulic Works. Suspended Sediment Data for Surface Water in Turkey; DSI: Ankara, Turkey, 2015. [Google Scholar]
- Swarnkar, S.; Malini, A.; Tripathi, S.; Sinha, R. Assessment of uncertainties in soil erosion and sediment yield estiamtes at ungauged basins: An application to the Garra River basin, India. Hydrol. Earth Syst. Sci. Discuss. 2017. [Google Scholar] [CrossRef]
- Tokatli, C. Assessment of the water quality in the Meriç river: As an element of ecosystem in the Thrace region of Turkey. Polish J. Environ. Stud. 2015, 24, 2205–2211. [Google Scholar] [CrossRef]
- İrvem, A.; Topaloglu, F.; Uygur, V. Estimating spatial distribution of soil loss over Seyhan river basin in Turkey. J. Hydrol. 2007, 336, 30–37. [Google Scholar] [CrossRef]
- Erkal, T.; Yıldırım, Ü. Soil erosion risk assessment in the Sincanlı Sub-Watershed of the Akarçay Basin (Afyonkarahisar, Turkey) using the Universal Soil Loss Equation (USLE). Ekoloji 2012, 21, 18–29. [Google Scholar] [CrossRef]
- Özşahin, E.; Atasoy, A. Soil erosion estimation in Lower Asi River catchment using GIS. Procedia Soc. Behav. Sci. 2013, 120, 730–739. [Google Scholar] [CrossRef]
CORINE: 1st Level | 1990 | 2015 | Change | C-Factor Values | |||
---|---|---|---|---|---|---|---|
LULC Classes | Area (km²) | Rate (%) | Area (km²) | Rate (%) | Area (km²) | Rate (%) | |
Artificial surfaces 1 | 1873.25 | 3.53 | 2093.62 | 3.95 | +220.37 | +0.42 | 0.001–0.01 |
Agricultural areas 2 | 29,792.03 | 56.21 | 29,438.41 | 55.54 | −353.62 | −0.67 | 0.1–0.2 |
Forested areas 3 | 20,831.26 | 39.30 | 20,893.09 | 39.42 | +61.83 | +0.12 | 0.001–0.003 |
Wetlands 4 | 128.37 | 0.24 | 106.59 | 0.20 | −21.78 | −0.04 | 0.00 |
Water bodies 5 | 375.10 | 0.71 | 468.30 | 0.88 | +93.20 | +0.18 | 0.00 |
Year | The Mean Annual Rate of Soil Loss (t ha−1 year−1) | The Suspended Sediment Load (t ha−1 year−1) |
---|---|---|
1990 | 0.585 | 0.04 |
2015 | 0.589 | 0.03 |
Change | +0.004 | −0.010 |
CORINE: 1st Level LULC Class | 1990 | 2015 | ||
---|---|---|---|---|
Area (km²) | Soil Loss (t ha−1 year−1) | Area (km2) | Soil Loss (t ha−1 year−1) | |
1. Artificial surfaces | 1873.25 | 0.85 | 2093.62 | 0.88 |
2. Agricultural areas | 29,792.02 | 1.35 | 29,438.40 | 1.23 |
3. Forests and semi natural areas | 20,831.26 | 0.27 | 20,893.09 | 0.28 |
4. Wetlands | 128.37 | 0.001 | 106.59 | 0.001 |
5. Water bodies | 375.10 | 0.003 | 468.30 | 0.003 |
Weighted Averages | 53.000 | 0.895 | 53.000 | 0.828 |
Erosion Risk Classes | Soil Loss (t ha−1 year−1) | 1990 | 2015 | Changes | |||
---|---|---|---|---|---|---|---|
Area (km2) | Rate (%) | Area (km2) | Rate (%) | Area (km2) | Rate (%) | ||
Negligible | 0–1 | 39,140.21 | 73.85 | 39,215.0 | 73.99 | +74.79 | +0.14 |
Very low | 1.01–2 | 5850.31 | 11.04 | 5863.51 | 11.05 | +13.20 | +0.02 |
Low | 2.01–5 | 5442.84 | 10.27 | 5383.17 | 10.16 | −59.67 | −0.11 |
Moderate | 5.01–10 | 1562.94 | 2.95 | 1529.54 | 2.89 | −33.40 | −0.06 |
High | 10.01–20 | 688.70 | 1.30 | 702.96 | 1.33 | +14.26 | +0.03 |
Very high | 20.01–50 | 271.71 | 0.51 | 267.71 | 0.51 | −4.00 | −0.01 |
Extremely high | ≥50.01 | 43.29 | 0.08 | 38.11 | 0.07 | −5.18 | −0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozsahin, E.; Duru, U.; Eroglu, I. Land Use and Land Cover Changes (LULCC), a Key to Understand Soil Erosion Intensities in the Maritsa Basin. Water 2018, 10, 335. https://doi.org/10.3390/w10030335
Ozsahin E, Duru U, Eroglu I. Land Use and Land Cover Changes (LULCC), a Key to Understand Soil Erosion Intensities in the Maritsa Basin. Water. 2018; 10(3):335. https://doi.org/10.3390/w10030335
Chicago/Turabian StyleOzsahin, Emre, Umit Duru, and Ilker Eroglu. 2018. "Land Use and Land Cover Changes (LULCC), a Key to Understand Soil Erosion Intensities in the Maritsa Basin" Water 10, no. 3: 335. https://doi.org/10.3390/w10030335