Next Article in Journal
New Comparative Experiments of Different Soil Types for Farmland Water Conservation in Arid Regions
Next Article in Special Issue
Land Water-Storage Variability over West Africa: Inferences from Space-Borne Sensors
Previous Article in Journal
Assessing Eutrophication Potential of a Freshwater Lake by Relating Its Bioproductivity and Biodiversity: A Case Study of Lake Wilson on Central Oahu, Hawaii
Previous Article in Special Issue
Potential of Sentinel-1 Images for Estimating the Soil Roughness over Bare Agricultural Soils
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessArticle
Water 2018, 10(3), 297;

Water Level Measurements from Drones: A Pilot Case Study at a Dam Site

Department of Civil and Environmental Engineering, University of Perugia, 06125 Perugia, Italy
Author to whom correspondence should be addressed.
Received: 10 January 2018 / Revised: 21 February 2018 / Accepted: 6 March 2018 / Published: 9 March 2018
(This article belongs to the Special Issue Applications of Remote Sensing and GIS in Hydrology)
Full-Text   |   PDF [1234 KB, uploaded 9 March 2018]   |  


Unmanned Aerial Vehicles (UAVs) are now filling in the gaps between spaceborne and ground-based observations and enhancing the spatial resolution and temporal coverage of data acquisition. In the realm of hydrological observations, UAVs play a key role in quantitatively characterizing the surface flow, allowing for remotely accessing the water body of interest. In this paper, we propose a technology that uses a sensing platform encompassing a drone and a camera to determine the water level. The images acquired by means of the sensing platform are then analyzed using the Canny method to detect the edges of water level and of Ground Control Points (GCPs) used as reference points. The water level is then retrieved from images and compared to a benchmark value obtained by a traditional device. The method is tested at four locations in an artificial lake in central Italy. Results are encouraging, as the overall mean error between estimated and true water level values is around 0.05 m. This technology is well suited to improve hydraulic modeling and thus provides reliable support to flood mitigation strategies. View Full-Text
Keywords: water level measurement; surface hydrology; images; unmanned aerial vehicle; drone; dam water level measurement; surface hydrology; images; unmanned aerial vehicle; drone; dam

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Ridolfi, E.; Manciola, P. Water Level Measurements from Drones: A Pilot Case Study at a Dam Site. Water 2018, 10, 297.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top