A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems
Abstract
:1. Introduction
2. Review Methodology
2.1. Selection of Resilience Measures for Review
2.2. Criteria for Literature Review
3. Overview of the Selected Resilience Measures
4. Discussion
4.1. Gaps of Evaluation Criteria in the Selected Measures
4.2. Discussion on System Functionality in Pre- and Post-Disruption
4.3. Discussion on System Absorptions of Disruptions
4.4. Discussion on Rapid Recovery of Disrupted System
4.5. Discussion on Adaptation to Changing Disruptions and Their Uncertainty
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gheisi, A.; Forsyth, M.; Naser, G. Water distribution systems reliability: A review of research literature. J. Water Resour. Plan. Manag. 2016, 142, 04016047. [Google Scholar] [CrossRef]
- Shafiqul Islam, M.; Sadiq, R.; Rodriguez, M.J.; Najjaran, H.; Hoorfar, M. Reliability assessment for water supply systems under uncertainties. J. Water Resour. Plan. Manag. 2013, 140, 468–479. [Google Scholar] [CrossRef]
- Farmani, R.; Walters, G.; Savic, D. Evolutionary multi-objective optimization of the design and operation of water distribution network: Total cost vs. Reliability vs. Water quality. J. Hydroinform. 2006, 8, 165–179. [Google Scholar]
- Kanakoudis, V.; Tsitsifli, S. Water pipe network reliability assessment using the dac method. Desalination Water Treat. 2011, 33, 97–106. [Google Scholar] [CrossRef]
- Tsitsifli, S.; Kanakoudis, V.; Bakouros, I. Pipe networks risk assessment based on survival analysis. Water Resour. Manag. 2011, 25, 3729–3746. [Google Scholar] [CrossRef]
- Kanakoudis, V.; Tolikas, D. The role of leaks and breaks in water networks: Technical and economical solutions. J. Water Supply Res. Technol. AQUA 2001, 50, 301–311. [Google Scholar]
- Kanakoudis, V.K.; Tolikas, D.K. Performance Indices of a Water Network—Part I: Theory. In Proceedings of the International Conference “Protection and Restoration of the Environment VI”, Skiathos, Greece, 1–5 July 2002; Center for Environmental Systems at Stevens Institute of Technology: Hoboken, NJ, USA, 2002; pp. 257–266. [Google Scholar]
- Kanakoudis, V. Vulnerability based management of water resources systems. J. Hydroinform. 2004, 6, 133–156. [Google Scholar]
- Kanakoudis, V.; Tolikas, D. Assessing the performance level of a water system. Water Air Soil Pollut. Focus 2004, 4, 307–318. [Google Scholar] [CrossRef]
- Blackmore, J.M.; Plant, R.A. Risk and resilience to enhance sustainability with application to urban water systems. J. Water Resour. Plan. Manag. 2008, 134, 224–233. [Google Scholar] [CrossRef]
- Kanakoudis, V.K.; Tolikas, D.K. Performance Indices of a Water Network—PART III: Risk Analysis. In Proceedings of the International Conference “Protection and Restoration of the Environment VI”, Skiathos, Greece, 1–5 July 2002; Center for Environmental Systems at Stevens Institute of Technology: Hoboken, NJ, USA, 2002; pp. 277–285. [Google Scholar]
- Little, R.G. Controlling cascading failure: Understanding the vulnerabilities of interconnected infrastructures. J. Urban Technol. 2002, 9, 109–123. [Google Scholar] [CrossRef]
- Asefa, T.; Clayton, J.; Adams, A.; Anderson, D. Performance evaluation of a water resources system under varying climatic conditions: Reliability, resilience, vulnerability and beyond. J. Hydrol. 2014, 508, 53–65. [Google Scholar] [CrossRef]
- Butler, D.; Farmani, R.; Fu, G.; Ward, S.; Diao, K.; Astaraie-Imani, M. A new approach to urban water management: Safe and sure. Procedia Eng. 2014, 89, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Amarasinghe, P.; Liu, A.; Egodawatta, P.; Barnes, P.; McGree, J.; Goonetilleke, A. Quantitative assessment of resilience of a water supply system under rainfall reduction due to climate change. J. Hydrol. 2016, 540, 1043–1052. [Google Scholar] [CrossRef]
- Tsitsifli, S.; Kanakoudis, V. Predicting the behavior of a pipe network using the “critical z-score” as its performance indicator. Desalination 2010, 250, 258–265. [Google Scholar] [CrossRef]
- Li, Y.; Lence, B.J. Estimating resilience for water resources systems. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Zhuang, B.; Lansey, K.; Kang, D. Resilience/availability analysis of municipal water distribution system incorporating adaptive pump operation. J. Hydraul. Eng. 2012, 139, 527–537. [Google Scholar] [CrossRef]
- Cimellaro, G.P.; Tinebra, A.; Renschler, C.; Fragiadakis, M. New resilience index for urban water distribution networks. J. Struct. Eng. 2015, 142, C4015014. [Google Scholar] [CrossRef]
- Kanakoudis, V.K.; Tolikas, D.K. Managing Water Resources and Supply Systems: Fail-Safe vs. Safe-Fail. In Proceedings of the EWRA 5th International Conference “Water Resources Management in the Era of Transition”, Athens, Greece, 4–8 September 2002; Symetria Publications: Athens, Greece, 2002; pp. 194–204. [Google Scholar]
- Hosseini, S.; Barker, K.; Ramirez-Marquez, J.E. A review of definitions and measures of system resilience. Reliab. Eng. Syst. Saf. 2016, 145, 47–61. [Google Scholar] [CrossRef]
- Klise, K.A.; Murray, R.; Walker, L.T.N. Systems Measures of Water Distribution System Resilience; Sandia National Laboratories (SNL-NM): Albuquerque, NM, USA, 2015.
- Moy, W.S.; Cohon, J.L.; ReVelle, C.S. A programming model for analysis of the reliability, resilience, and vulnerability of a water supply reservoir. Water Resour. Res. 1986, 22, 489–498. [Google Scholar] [CrossRef]
- Wang, C.; Blackmore, J.M. Resilience concepts for water resource systems. J. Water Resour. Plan. Manag. 2009, 135, 528–536. [Google Scholar] [CrossRef]
- Butler, D.; Ward, S.; Sweetapple, C.; Astaraie-Imani, M.; Diao, K.; Farmani, R.; Fu, G. Reliable, resilient and sustainable water management: The safe & sure approach. Glob. Chall. 2016, 1, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, A.; Yamagata, Y. On the suitability of assessment tools for guiding communities towards disaster resilience. Int. J. Disaster Risk Reduct. 2016, 18, 115–124. [Google Scholar] [CrossRef]
- Matthews, J.C. Disaster resilience of critical water infrastructure systems. J. Struct. Eng. 2015, 142, C6015001. [Google Scholar] [CrossRef]
- Reca, J.; Martinez, J.; Banos, R.; Gil, C. Optimal design of gravity-fed looped water distribution networks considering the resilience index. J. Water Resour. Plan. Manag. 2008, 134, 234–238. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stedinger, J.R.; Loucks, D.P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef]
- Vogel, R.M.; Bolognese, R.A. Storage-reliability-resilience-yield relations for over-year water supply systems. Water Resour. Res. 1995, 31, 645–654. [Google Scholar] [CrossRef]
- Todini, E. Looped water distribution networks design using a resilience index based heuristic approach. Urban Water 2000, 2, 115–122. [Google Scholar] [CrossRef]
- Prasad, T.D.; Park, N.-S. Multiobjective genetic algorithms for design of water distribution networks. J. Water Resour. Plan. Manag. 2004, 130, 73–82. [Google Scholar] [CrossRef]
- Kjeldsen, T.R.; Rosbjerg, D. Choice of reliability, resilience and vulnerability estimators for risk assessments of water resources systems/choix d’estimateurs de fiabilité, de résilience et de vulnérabilité pour les analyses de risque de systèmes de ressources en eau. Hydrol. Sci. J. 2004, 49. [Google Scholar] [CrossRef]
- Jayaram, N.; Srinivasan, K. Performance-based optimal design and rehabilitation of water distribution networks using life cycle costing. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Yazdani, A.; Otoo, R.A.; Jeffrey, P. Resilience enhancing expansion strategies for water distribution systems: A network theory approach. Environ. Model. Softw. 2011, 26, 1574–1582. [Google Scholar] [CrossRef]
- Liu, D.; Chen, X.; Nakato, T. Resilience assessment of water resources system. Water Resour. Manag. 2012, 26, 3743–3755. [Google Scholar] [CrossRef]
- Mehran, A.; Mazdiyasni, O.; AghaKouchak, A. A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand. J. Geophys. Res. Atmos. 2015, 120, 7520–7533. [Google Scholar] [CrossRef]
- Herrera, M.; Abraham, E.; Stoianov, I. Graph-theoretic surrogate measures for analysing the resilience of water distribution networks. Procedia Eng. 2015, 119, 1241–1248. [Google Scholar] [CrossRef]
- Wright, R.; Herrera, M.; Parpas, P.; Stoianov, I. Hydraulic resilience index for the critical link analysis of multi-feed water distribution networks. Procedia Eng. 2015, 119, 1249–1258. [Google Scholar] [CrossRef]
- Porse, E.; Lund, J. Network analysis and visualizations of water resources infrastructure in California: Linking connectivity and resilience. J. Water Resour. Plan. Manag. 2015, 142, 04015041. [Google Scholar] [CrossRef]
- Pandit, A.; Crittenden, J.C. Index of network resilience for urban water distribution systems. Int. J. Crit. Infrastruct. 2016, 12, 120–142. [Google Scholar] [CrossRef]
- Herrera, M.; Abraham, E.; Stoianov, I. A graph-theoretic framework for assessing the resilience of sectorised water distribution networks. Water Resour. Manag. 2016, 30, 1685–1699. [Google Scholar] [CrossRef]
- Qi, M.; Feng, M.; Sun, T.; Yang, W. Resilience changes in watershed systems: A new perspective to quantify long-term hydrological shifts under perturbations. J. Hydrol. 2016, 539, 281–289. [Google Scholar] [CrossRef]
- Farahmandfar, Z.; Piratla, K.R.; Andrus, R.D. Resilience evaluation of water supply networks against seismic hazards. J. Pipeline Syst. Eng. Pract. 2016, 8, 04016014. [Google Scholar] [CrossRef]
- Chmielewski, H.; Guidotti, R.; McAllister, T.; Gardoni, P. Response of Water Systems under Extreme Events: A Comprehensive Approach to Modeling Water System Resilience. In Proceedings of the World Environmental and Water Resources Congress 2016, West Palm Beach, FL, USA, 22–26 May 2016; American Society of Civil Engineers: Reston, VA, USA, 2016; pp. 475–486. [Google Scholar]
- Kulak, O.; Cebi, S.; Kahraman, C. Applications of axiomatic design principles: A literature review. Expert Syst. Appl. 2010, 37, 6705–6717. [Google Scholar] [CrossRef]
- Suh, N.P. Axiomatic Design: Advances and Applications (the Oxford Series on Advanced Manufacturing); Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Guenov, M.D.; Barker, S.G. Application of axiomatic design and design structure matrix to the decomposition of engineering systems. Syst. Eng. 2005, 8, 29–40. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Manyena, S.B. The concept of resilience revisited. Disasters 2006, 30, 434–450. [Google Scholar] [CrossRef] [PubMed]
- Mayunga, J.S. Understanding and Applying the Concept of Community Disaster Resilience: A Capital-Based Approach. Available online: https://www.u-cursos.cl/usuario/3b514b53bcb4025aaf9a6781047e4a66/mi_blog/r/11._Joseph_S._Mayunga.pdf (accessed on 7 February 2018).
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Candelieri, A.; Soldi, D.; Archetti, F. Network analysis for resilience evaluation in water distribution networks. Environ. Eng. Manag. J. 2015, 14, 1261–1270. [Google Scholar]
- Nan, C.; Sansavini, G. A quantitative method for assessing resilience of interdependent infrastructures. Reliab. Eng. Syst. Saf. 2017, 157, 35–53. [Google Scholar] [CrossRef]
- Francis, R.; Bekera, B. A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliab. Eng. Syst. Saf. 2014, 121, 90–103. [Google Scholar] [CrossRef]
- Sharifi, A.; Yamagata, Y. Principles and criteria for assessing urban energy resilience: A literature review. Renew. Sustain. Energy Rev. 2016, 60, 1654–1677. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. Framework for analytical quantification of disaster resilience. Eng. Struct. 2010, 32, 3639–3649. [Google Scholar] [CrossRef]
- Dinh, L.T.; Pasman, H.; Gao, X.; Mannan, M.S. Resilience engineering of industrial processes: Principles and contributing factors. J. Loss Prev. Process Ind. 2012, 25, 233–241. [Google Scholar] [CrossRef]
- Sharifi, A. A critical review of selected tools for assessing community resilience. Ecol. Indic. 2016, 69, 629–647. [Google Scholar] [CrossRef]
- Kallaos, J.; Mainguy, G.; Wyckmans, A. Considering resilience: Steps towards an assessment framework. TeMA J. Land Use Mobil. Environ. 2014, 7, 5–28. [Google Scholar]
- Suh, N.P. Complexity: Theory and Applications; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Fowler, H.; Kilsby, C.; O’Connell, P. Modeling the impacts of climatic change and variability on the reliability, resilience, and vulnerability of a water resource system. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Srdjevic, B.; Medeiros, Y.; Faria, A. An objective multi-criteria evaluation of water management scenarios. Water Resour. Manag. 2004, 18, 35–54. [Google Scholar] [CrossRef]
- Chanda, K.; Maity, R.; Sharma, A.; Mehrotra, R. Spatiotemporal variation of long-term drought propensity through reliability-resilience-vulnerability based drought management index. Water Resour. Res. 2014, 50, 7662–7676. [Google Scholar] [CrossRef]
- Jain, S.; Bhunya, P. Reliability, resilience and vulnerability of a multipurpose storage reservoir/confiance, résilience et vulnérabilité d’un barrage multi-objectifs. Hydrol. Sci. J. 2008, 53, 434–447. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–808. [Google Scholar]
- Dakos, V.; van Nes, E.H.; Donangelo, R.; Fort, H.; Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 2010, 3, 163–174. [Google Scholar] [CrossRef]
- Greco, R.; Di Nardo, A.; Santonastaso, G. Resilience and entropy as indices of robustness of water distribution networks. J. Hydroinform. 2012, 14, 761–771. [Google Scholar] [CrossRef]
- Tsakiris, G.; Spiliotis, M. Applying resilience indices for assessing the reliability of water distribution systems. Water Util. J. 2012, 3, 19–27. [Google Scholar]
- Creaco, E.; Franchini, M.; Todini, E. Generalized resilience and failure indices for use with pressure-driven modeling and leakage. J. Water Resour. Plan. Manag. 2016, 142, 04016019. [Google Scholar] [CrossRef]
- Liu, H.; Savić, D.A.; Kapelan, Z.; Creaco, E.; Yuan, Y. Reliability surrogate measures for water distribution system design: Comparative analysis. J. Water Resour. Plan. Manag. 2016, 143, 04016072. [Google Scholar] [CrossRef]
- Creaco, E.; Franchini, M.; Todini, E. The combined use of resilience and loop diameter uniformity as a good indirect measure of network reliability. Urban Water J. 2016, 13, 167–181. [Google Scholar] [CrossRef]
- Raad, D.; Sinske, A.; Van Vuuren, J. Comparison of four reliability surrogate measures for water distribution systems design. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Bi, W.; Dandy, G.C.; Maier, H.R. Use of domain knowledge to increase the convergence rate of evolutionary algorithms for optimizing the cost and resilience of water distribution systems. J. Water Resour. Plan. Manag. 2016, 142, 04016027. [Google Scholar] [CrossRef]
- Simonovic, S.P.; Arunkumar, R. Quantification of resilience to water scarcity, a dynamic measure in time and space. Proc. Int. Assoc. Hydrol. Sci. 2016, 373, 13–17. [Google Scholar] [CrossRef]
- Soldi, D.; Candelieri, A.; Archetti, F. Resilience and vulnerability in urban water distribution networks through network theory and hydraulic simulation. Procedia Eng. 2015, 119, 1259–1268. [Google Scholar] [CrossRef]
- Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Santonastaso, G.F.; Tzatchkov, V.; Varela, J.M.R. Economic and energy criteria for district meter areas design of water distribution networks. Water 2017, 9, 463. [Google Scholar] [CrossRef]
- Ouyang, M.; Wang, Z. Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis. Reliab. Eng. Syst. Saf. 2015, 141, 74–82. [Google Scholar] [CrossRef]
- Eusgeld, I.; Nan, C.; Dietz, S. “System-of-systems” approach for interdependent critical infrastructures. Reliab. Eng. Syst. Saf. 2011, 96, 679–686. [Google Scholar] [CrossRef]
- Diao, K.; Sweetapple, C.; Farmani, R.; Fu, G.; Ward, S.; Butler, D. Global resilience analysis of water distribution systems. Water Res. 2016, 106, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.M.; Panguluri, S.; Nelson, T.D.; Wyman, R.P. Protecting drinking water utilities from cyberthreats. J. Am. Water Works Assoc. 2017, 109, 50–58. [Google Scholar] [CrossRef]
- Taormina, R.; Galelli, S.; Tippenhauer, N.O.; Salomons, E.; Ostfeld, A. Characterizing cyber-physical attacks on water distribution systems. J. Water Resour. Plan. Manag. 2017, 143, 04017009. [Google Scholar] [CrossRef]
- Wang, Z.; Song, H.; Watkins, D.W.; Ong, K.G.; Xue, P.; Yang, Q.; Shi, X. Cyber-physical systems for water sustainability: Challenges and opportunities. IEEE Commun. Mag. 2015, 53, 216–222. [Google Scholar] [CrossRef]
- Ostfeld, A.; Uber, J.G.; Salomons, E.; Berry, J.W.; Hart, W.E.; Phillips, C.A.; Watson, J.-P.; Dorini, G.; Jonkergouw, P.; Kapelan, Z. The battle of the water sensor networks (bwsn): A design challenge for engineers and algorithms. J. Water Resour. Plan. Manag. 2008, 134, 556–568. [Google Scholar] [CrossRef]
- Taormina, R.; Galelli, S. Real-Time Detection of Cyber-Physical Attacks on Water Distribution Systems Using Deep Learning. In Proceedings of the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–25 May 2017; American Society of Civil Engineers: Reston, VA, USA, 2017; pp. 469–479. [Google Scholar]
- Hu, Z.; Mahadevan, S. Resilience assessment based on time-dependent system reliability analysis. J. Mech. Des. 2016, 138, 111404. [Google Scholar] [CrossRef]
- Pahl-Wostl, C.; Craps, M.; Dewulf, A.; Mostert, E.; Tabara, D.; Taillieu, T. Social learning and water resources management. Ecol. Soc. 2007, 12. [Google Scholar] [CrossRef]
- Ward, S.; Butler, D. Rainwater harvesting and social networks: Visualising interactions for niche governance, resilience and sustainability. Water 2016, 8, 526. [Google Scholar] [CrossRef]
- Gallopín, G.C. Five stylized scenarios. In Global Water Futures 2050; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2012. [Google Scholar]
- Haimes, Y.Y. On the definition of resilience in systems. Risk Anal. 2009, 29, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, U.; Sharma, B.R.; Aloysius, N.; Scott, C.; Smakhtin, V.; De Fraiture, C. Spatial Variation in Water Supply and Demand Across River Basins of India; IWMI (International Water Management Institute): Colombo, Sri Lanka, 2005; Volume 83. [Google Scholar]
- Sapkota, M.; Arora, M.; Malano, H.; Moglia, M.; Sharma, A.; George, B.; Pamminger, F. An overview of hybrid water supply systems in the context of urban water management: Challenges and opportunities. Water 2014, 7, 153–174. [Google Scholar] [CrossRef]
- Ma, X.C.; Xue, X.; González-Mejía, A.; Garland, J.; Cashdollar, J. Sustainable water systems for the city of tomorrow—A conceptual framework. Sustainability 2015, 7, 12071–12105. [Google Scholar] [CrossRef]
No. | Reference | Year | Measure Type | Comparable Concept | Target System |
---|---|---|---|---|---|
1 | Hashimoto et al. [29] | 1982 | Probabilistic/Dynamic | - | WRS |
2 | Moy et al. [23] | 1986 | Deterministic/Dynamic | - | WRS |
3 | Vogel and Bolognese [30] | 1995 | Probabilistic/Dynamic | - | WRS |
4 | Todini [31] | 2000 | Deterministic/Static | Reliability | WDS |
5 | Prasad and Park [32] | 2004 | Deterministic/Static | Reliability | WDS |
6 | Kjeldsen and Rosbjerg [33] | 2004 | Probabilistic/Dynamic | - | WRS |
7 | Jayaram and Srinivasan [34] | 2008 | Deterministic/Static | Reliability | WDS |
8 | Yazdani et al. [35] | 2011 | Deterministic/Static | Redundancy/Robustness | WDS |
9 | Liu et al. [36] | 2012 | Probabilistic/Static | - | WRS |
10 | Zhuang et al. [18] | 2012 | Deterministic/Dynamic | Availability | WDS |
11 | Mehran et al. [37] | 2015 | Probabilistic/Dynamic | - | WRS |
12 | Cimellaro et al. [19] | 2015 | Deterministic/Dynamic | - | WDS |
13 | Herrera et al. [38] | 2015 | Deterministic/Dynamic | Redundancy | WDS |
14 | Wright et al. [39] | 2015 | Deterministic/Static | - | WDS |
15 | Porse and Lund [40] | 2015 | Deterministic/Static | Connectivity | WRS |
16 | Pandit and Crittenden [41] | 2016 | Deterministic/Static | Redundancy/Robustness | WDS |
17 | Herrera et al. [42] | 2016 | Deterministic/Dynamic | Redundancy | WDS |
18 | Qi et al. [43] | 2016 | Probabilistic/Dynamic | - | WRS |
19 | Farahmandfar et al. [44] | 2016 | Probabilistic/Static | Redundancy/Robustness | WDS |
20 | Amarasinghe et al. [15] | 2016 | Deterministic/Dynamic | - | WRS |
21 | Chmielewski et al. [45] | 2016 | Deterministic/Dynamic | - | WDS |
Functional Requirements (FRs) | Design Parameters (DPs) |
---|---|
FR1 Evaluate system functionality before/after disruptions | DP1 System functionality |
FR11 Estimate system functionality in normal condition | DP11 Baseline functionality |
FR12 Compare system functionality before/after disruptions | DP12 Standardization to the baseline |
FR2 Evaluate potential impacts from disruptions | DP2 Potential impact on system |
FR21 Define a minimum acceptable level of system impacts | DP21 Threshold functionality |
FR22 Estimate impacts on system components conditions | DP22 System components damage |
FR23 Estimate impacts on whole system functionality | DP23 Whole system damage |
FR24 Estimate impacts on interrelated systems | DP24 Cascading damage |
FR3 Evaluate rapidity of system recovery from disrupted state | DP3 Speed of system recovery |
FR31 Estimate rapidity of failure identification | DP31 Elapsed time to failure detection |
FR32 Estimate rapidity of satisfactory recovery | DP32 Elapsed time to satisfactory recovery |
FR4 Evaluate system performance to changing/uncertain disruptions | DP4 Adaptive capacity to uncertainties |
FR41 Deal with uncertainty of disruptions | DP41 Uncertainty scenarios of disruptions |
FR42 Evaluate system resilience in long-term period | DP42 Time variation of system resilience |
FR43 Evaluate redundant capacity for adaptation to unexpected | DP43 System redundancy |
DP11 | DP12 | DP21 | DP22 | DP23 | DP24 | DP31 | DP32 | DP41 | DP42 | DP43 | |
---|---|---|---|---|---|---|---|---|---|---|---|
FR11 | × | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
FR12 | × | × | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
FR21 | 0 | 0 | × | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
FR22 | 0 | 0 | 0 | × | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
FR23 | 0 | 0 | × | × | × | 0 | 0 | 0 | 0 | 0 | 0 |
FR24 | 0 | 0 | 0 | 0 | 0 | × | 0 | 0 | 0 | 0 | 0 |
FR31 | 0 | 0 | 0 | 0 | 0 | 0 | × | 0 | 0 | 0 | 0 |
FR32 | 0 | 0 | 0 | 0 | 0 | 0 | × | × | 0 | 0 | 0 |
FR41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | × | 0 | 0 |
FR42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | × | 0 |
FR43 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | × |
Measurements | Definition |
---|---|
Average degree (degreeavg) |
|
Link-per-node ratio (e) |
|
Link density (q) |
|
Network diameter (dT) |
|
Average path-length (lT) |
|
Betweenness centrality (BC) |
|
Closeness centrality (CC) |
|
Central point dominance (CB) |
|
Clustering coefficient (C) |
|
Meshed-ness coefficient (Rm) |
|
Density of articulation points (Dap) and bridge edge (Cbr) |
|
Spectral gap () |
|
Algebraic connectivity () |
|
Authors (Measure) | Baseline Functionality | Standardization to Baseline | Thresholds Functionality | Component Damage | Whole System Damage | Cascading Damage | Elapsed Time to Failure Detection | Elapsed Time to Satisfactory Recovery | Uncertainty Scenarios of Disruptions | Time Variation of Resilience | System Redundancy |
---|---|---|---|---|---|---|---|---|---|---|---|
Hashimoto et al. [29] | O | X | O | X | O | X | X | O | O | O | X |
Moy et al. [23] | O | O | O | X | O | X | X | O | X | X | X |
Kjeldsen and Rosbjerg [33] | O | X | O | X | O | X | X | O | O | X | X |
Vogel and Bolognes [30] | O | O | O | X | O | X | X | X | O | X | X |
Liu et al. [36] | X | X | O | X | O | X | X | X | O | X | X |
Mehran et al. [37] | O | O | O | X | O | X | X | X | X | O | X |
Qi et al. [43] | X | X | X | X | X | X | X | X | X | O | X |
Amarasinghe et al. [15] | O | O | O | X | O | X | X | X | O | X | X |
Todini [31] | O | O | O | X | O | X | X | X | O | O | X |
Prasad and Park [32] | O | O | O | X | O | X | X | X | O | X | O |
Jayaram and Srinivasan [34] | X | X | O | X | O | X | X | X | O | O | X |
Zhuang et al. [18] | O | X | O | O | O | X | X | O | O | X | X |
Wright et al. [39] | X | X | O | X | O | X | X | X | X | X | X |
Cimellaro et al. [19] | O | O | O | O | O | X | X | O | O | X | X |
Chmielewski et al. [45] | O | O | O | O | O | X | X | O | O | X | X |
Yazdani et al. [35] | X | X | X | X | X | X | X | X | X | X | O |
Herrera et al. [38] | X | X | X | X | X | X | X | X | X | X | O |
Herrera et al. [42] | X | X | X | X | X | X | X | X | O | X | O |
Farahmandfar et al. [44] | X | X | X | O | X | X | X | X | O | X | O |
Pandit and Crittenden [41] | X | X | X | X | X | X | X | X | X | X | O |
Porse and Lund [40] | X | X | X | X | X | X | X | X | X | X | O |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.; Lee, S.; Judi, D.R.; Parvania, M.; Goharian, E.; McPherson, T.; Burian, S.J. A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems. Water 2018, 10, 164. https://doi.org/10.3390/w10020164
Shin S, Lee S, Judi DR, Parvania M, Goharian E, McPherson T, Burian SJ. A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems. Water. 2018; 10(2):164. https://doi.org/10.3390/w10020164
Chicago/Turabian StyleShin, Sangmin, Seungyub Lee, David R. Judi, Masood Parvania, Erfan Goharian, Timothy McPherson, and Steven J. Burian. 2018. "A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems" Water 10, no. 2: 164. https://doi.org/10.3390/w10020164
APA StyleShin, S., Lee, S., Judi, D. R., Parvania, M., Goharian, E., McPherson, T., & Burian, S. J. (2018). A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems. Water, 10(2), 164. https://doi.org/10.3390/w10020164