Impact of Hydrodynamic Reconfiguration with Baffles on Treatment Performance in Waste Stabilisation Ponds: A Full-Scale Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Bathymetry Mapping
2.3. Hydrodynamic Modelling
2.4. Tracer Testing
2.5. Modelling Scenarios and Analysis
2.6. Baffle Design
2.7. Wind Measurement
3. Results
3.1. Baffle Configuration Modelling
3.2. Baffle Installation
3.3. Effect of Baffles on Pond Hydrodynamics
3.4. Modelled Effect of Wind on Flow
4. Discussion
4.1. Determination of Optimal Baffle Configuration
4.2. Flow and Treatment Improvement Provided by Baffles
4.3. The Impact of Wind on Ponds
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Daigger, G.T. Evolving Urban Water and Residuals Management Paradigms: Water Reclamation and Reuse, Decentralization, and Resource Recovery. Water Environ. Res. 2009, 81, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- United Nations Development Programme. Human Development Report 2006 - Beyond Scarcity: Power, Poverty and the Global Water Crisis; United Nations Development Programme (UNDP): NY, USA, 2006. [Google Scholar]
- UN-Water, Food and Agriculture Organization of the United Nations (FAO). Coping with Water Scarcity: Challenge of the Twenty-First Century; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2007. [Google Scholar]
- Rodriguez, D.J.; van den Berg, C.; McMahon, A. Investing in Water Infrastructure: Capital, Operations and Maintenance; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- GHD. Infrastructure Maintenance—A Report for Infrastructure Australia; GHD: Sydney, Australia, 2015. [Google Scholar]
- Hering, J.G.; Waite, T.D.; Luthy, R.G.; Drewes, J.E.; Sedlak, D.L. A Changing Framework for Urban Water Systems. Environ. Sci. Technol. 2013, 47, 10721–10726. [Google Scholar] [CrossRef] [PubMed]
- Water Services Association of Australia (WSAA), Infrastructure Partnerships Australia (IPA). Doing the Important as Well as the Urgent: Reforming the Urban Water Sector; WSAA and IPA: Sydney, Australia, 2015. [Google Scholar]
- Grant, S.B.; Saphores, J.-D.; Feldman, D.L.; Hamilton, A.J.; Fletcher, T.D.; Cook, P.L.M.; Stewardson, M.; Sanders, B.F.; Levin, L.A.; Ambrose, R.F.; et al. Taking the “Waste” Out of “Wastewater” for Human Water Security and Ecosystem Sustainability. Science 2012, 337, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-operation and Development (OECD). Infrastructure to 2030: Telecom, Land Transport, Water and Electricity; OECD Publishing: Paris, France, 2006. [Google Scholar]
- Mara, D. Domestic Wastewater Treatment in Developing Countries; Earthscan: London, UK, 2004. [Google Scholar]
- Nelson, K.L.; Cisneros, B.J.; Tchobanoglous, G.; Darby, J.L. Sludge accumulation, characteristics, and pathogen inactivation in four primary waste stabilization ponds in central Mexico. Water Res. 2004, 38, 111–127. [Google Scholar] [CrossRef] [PubMed]
- Peña Varón, M.; Mara, D. Waste Stabilisation Ponds; IRC International Water and Sanitation Centre: Delft, The Netherlands, 2004. [Google Scholar]
- Picot, B.; Sambuco, J.P.; Brouillet, J.L.; Riviere, Y. Wastewater stabilisation ponds: sludge accumulation, technical and financial study on desludging and sludge disposal case studies in France. Water Sci. Technol. 2005, 51, 227–234. [Google Scholar] [PubMed]
- Laurent, J.; Bois, P.; Nuel, M.; Wanko, A. Systemic models of full-scale Surface Flow Treatment Wetlands: Determination by application of fluorescent tracers. Chem. Eng. J. 2015, 264, 389–398. [Google Scholar] [CrossRef]
- Persson, J.; Wittgren, H.B. How hydrological and hydraulic conditions affect performance of ponds. Ecol. Eng. 2003, 21, 259–269. [Google Scholar] [CrossRef]
- Coggins, L.X.; Ghisalberti, M.; Ghadouani, A. Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds. Water Res. 2017, 110, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Olukanni, D.O.; Ducoste, J.J. Optimization of waste stabilization pond design for developing nations using computational fluid dynamics. Ecol. Eng. 2011, 37, 1878–1888. [Google Scholar] [CrossRef]
- Muttamara, S.; Puetpaiboon, U. Roles of baffles in waste stabilization ponds. Water Sci. Technol. 1997, 35, 275–284. [Google Scholar]
- Muttamara, S.; Puetpaiboon, U. Nitrogen removal in baffled waste stabilization ponds. Water Sci. Technol. 1996, 33, 173–181. [Google Scholar]
- Farjood, A.; Melville, B.W.; Shamseldin, A.Y. The effect of different baffles on hydraulic performance of a sediment retention pond. Ecol. Eng. 2015, 81, 228–232. [Google Scholar] [CrossRef]
- Persson, J. The hydraulic performance of ponds of various layouts. Urban Water 2000, 2, 243–250. [Google Scholar] [CrossRef]
- Salter, H.E.; Ta, C.T.; Williams, S.C. Three-dimensional computational fluid dynamic modelling of a facultative lagoon. Water Sci. Technol. 2000, 42, 335–342. [Google Scholar]
- Shilton, A.; Harrison, J. Development of guidelines for improved hydraulic design of waste stabilisation ponds. Water Sci. Technol. 2003, 48, 173–180. [Google Scholar] [PubMed]
- Vega, G.P.; Pena, M.R.; Ramirez, C.; Mara, D.D. Application of CFD modelling to study the hydrodynamics of various anaerobic pond configurations. Water Sci. Technol. 2003, 48, 163–171. [Google Scholar] [PubMed]
- Shilton, A.; Mara, D.D. CFD (computational fluid dynamics) modelling of baffles for optimizing tropical waste stabilization pond systems. Water Sci. Technol. 2005, 51, 103–106. [Google Scholar] [PubMed]
- Aldana, G.J.; Lloyd, B.J.; Guganesharajah, K.; Bracho, N. The development and calibration of a physical model to assist in optimising the hydraulic performance and design of maturation ponds. Water Sci. Technol. 2005, 51, 173–181. [Google Scholar] [PubMed]
- Abbas, H.; Nasr, R.; Seif, H. Study of waste stabilization pond geometry for the wastewater treatment efficiency. Ecol. Eng. 2006, 28, 25–34. [Google Scholar] [CrossRef]
- Bureau of Meteorology (BOM). Climate Data. Available online: http://www.bom.gov.au/climate/data/ (accessed on 19 July 2016).
- DHI. MIKE 21 Flow Model: Advection-Dispersion Module Scientific Documentation; DHI: Hørsholm, Denmark, 2012. [Google Scholar]
- DHI. MIKE 21 Flow Model: Advection-Dispersion Module User Guide; DHI: Hørsholm, Denmark, 2012. [Google Scholar]
- Babu, M.A.; Hes, E.M.A.; van der Steen, N.P.; Hooijmans, C.M.; Gijzen, H.J. Nitrification rates of algal-bacterial biofilms in wastewater stabilization ponds under light and dark conditions. Ecol. Eng. 2010, 36, 1741–1746. [Google Scholar] [CrossRef]
- Wahl, M.D.; Brown, L.C.; Soboyejo, A.O.; Martin, J.; Dong, B. Quantifying the hydraulic performance of treatment wetlands using the moment index. Ecol. Eng. 2010, 36, 1691–1699. [Google Scholar] [CrossRef]
- Murphy, C. Quantifying the Impact of Sludge Accumulation on the Hydraulic Performance of Waste Stabilisation Ponds. Bachelor’s Thesis, The University of Western Australia, Crawley, Australia, 5 November 2012. [Google Scholar]
- Ouedraogo, F.R.; Zhang, J.; Cornejo, P.K.; Zhang, Q.; Mihelcic, J.R.; Tejada-Martinez, A.E. Impact of sludge layer geometry on the hydraulic performance of a waste stabilization pond. Water Res. 2016, 99, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, D.G.; Cromar, N.J.; Nixon, J.B.; Ta, C.T.; Fallowfield, H.J. The spatial significance of water quality indicators in waste stabilization ponds - limitations of residence time distribution analysis in predicting treatment efficiency. Water Sci. Technol. 2003, 48, 211–218. [Google Scholar] [PubMed]
- Banda, C.G.; Sleigh, P.A.; Mara, D.D. CFD-based design of waste stabilization ponds: Significance of wind velocity. In Proceedings of the 7th IWA Specialist Group Conference on Waste Stabilization Ponds, Bangkok, Thailand, 25–27 September 2006. [Google Scholar]
- Badrot-Nico, F.; Guinot, V.; Brissaud, F. Taking wind into account in the design of waste stabilisation ponds. Water Sci. Technol. 2010, 61, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Sah, L.; Rousseau, D.P.L.; Hooijmans, C.M.; Lens, P.N.L. 3D model for a secondary facultative pond. Ecol. Model. 2011, 222, 1592–1603. [Google Scholar] [CrossRef]
- Passos, R.G.; Dias, D.F.C.; von Sperling, M. Review of practical aspects for modelling of stabilization ponds using Computational Fluid Dynamics. Environ. Technol. Rev. 2016, 5, 78–102. [Google Scholar] [CrossRef]
- Shilton, A.; Kreegher, S.; Grigg, N. Comparison of Computation Fluid Dynamics Simulation against Tracer Data from a Scale Model and Full-Sized Waste Stabilization Pond. J. Environ. Eng.-ASCE 2008, 134, 845–850. [Google Scholar] [CrossRef]
Configuration | Low; tn = 26.3 days | Average; tn = 22.1 days | High; tn = 19.1 days | ||||||
---|---|---|---|---|---|---|---|---|---|
tmean | MI | S | tmean | MI | S | tmean | MI | S | |
No baffles | 23.6 | 0.86 | 0.27 | 20.2 | 0.81 | 0.23 | 18.1 | 0.79 | 0.24 |
PA1 | 24.5 | 0.86 | 0.30 | 20.2 | 0.82 | 0.27 | 17.7 | 0.79 | 0.26 |
PA2 | 23.0 | 0.85 | 0.28 | 20.2 | 0.82 | 0.28 | 18.1 | 0.80 | 0.27 |
PA3 | 23.4 | 0.85 | 0.28 | 20.3 | 0.82 | 0.26 | 16.9 | 0.78 | 0.23 |
PE1 | 22.4 | 0.86 | 0.29 | 21.2 | 0.84 | 0.31 | 19.2 | 0.82 | 0.32 |
PE2 | 23.9 | 0.87 | 0.33 | 19.4 | 0.81 | 0.24 | 18.7 | 0.82 | 0.33 |
PE3 | 27.6 | 0.91 | 0.48 | 23.8 | 0.89 | 0.48 | 20.0 | 0.87 | 0.50 |
PE4 | 22.5 | 0.84 | 0.21 | 20.9 | 0.83 | 0.27 | 17.4 | 0.78 | 0.22 |
PE5 | 26.9 | 0.90 | 0.42 | 21.6 | 0.84 | 0.36 | 18.9 | 0.81 | 0.31 |
PE6 | 24.2 | 0.86 | 0.30 | 20.6 | 0.83 | 0.29 | 17.4 | 0.80 | 0.27 |
PE7 | 23.8 | 0.87 | 0.33 | 19.7 | 0.84 | 0.36 | 17.4 | 0.82 | 0.35 |
PE8 | 27.8 | 0.90 | 0.44 | 23.6 | 0.88 | 0.43 | 18.7 | 0.84 | 0.41 |
PE9 | 27.7 | 0.90 | 0.44 | 24.2 | 0.89 | 0.47 | 20.3 | 0.85 | 0.40 |
IPE1 | 23.2 | 0.88 | 0.41 | 21.0 | 0.86 | 0.39 | 18.5 | 0.84 | 0.41 |
IPE3 | 27.0 | 0.92 | 0.55 | 23.0 | 0.90 | 0.56 | 22.4 | 0.89 | 0.55 |
IPE5 | 26.3 | 0.88 | 0.38 | 22.6 | 0.86 | 0.38 | 20.3 | 0.86 | 0.45 |
Site | Date | Sludge infill % | tn (days) | tmean (days) | % change | Mass recovery % |
---|---|---|---|---|---|---|
Pond 1 | 2015 | 45 | 14.0 | 11.9 | −15 | 76 |
Pond 2 | 2013 | 21.5 | 19.1 | 14.0 | −27 | 84 |
2015 | 29 | 18.1 | 17.0 | −6 | 94 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coggins, L.X.; Sounness, J.; Zheng, L.; Ghisalberti, M.; Ghadouani, A. Impact of Hydrodynamic Reconfiguration with Baffles on Treatment Performance in Waste Stabilisation Ponds: A Full-Scale Experiment. Water 2018, 10, 109. https://doi.org/10.3390/w10020109
Coggins LX, Sounness J, Zheng L, Ghisalberti M, Ghadouani A. Impact of Hydrodynamic Reconfiguration with Baffles on Treatment Performance in Waste Stabilisation Ponds: A Full-Scale Experiment. Water. 2018; 10(2):109. https://doi.org/10.3390/w10020109
Chicago/Turabian StyleCoggins, Liah X., Jesse Sounness, Lianpeng Zheng, Marco Ghisalberti, and Anas Ghadouani. 2018. "Impact of Hydrodynamic Reconfiguration with Baffles on Treatment Performance in Waste Stabilisation Ponds: A Full-Scale Experiment" Water 10, no. 2: 109. https://doi.org/10.3390/w10020109
APA StyleCoggins, L. X., Sounness, J., Zheng, L., Ghisalberti, M., & Ghadouani, A. (2018). Impact of Hydrodynamic Reconfiguration with Baffles on Treatment Performance in Waste Stabilisation Ponds: A Full-Scale Experiment. Water, 10(2), 109. https://doi.org/10.3390/w10020109