Waters from the Djiboutian Afar: A Review of Strontium Isotopic Composition and a Comparison with Ethiopian Waters and Red Sea Brines
Abstract
:1. Introduction
2. Geological Background and the Strontium Isotope Ratio of the Rocks
3. Materials and Methods
4. Results
5. Discussion
5.1. Geothermal Waters and the Water/Rock Ratio
5.2. Hydrothermal Waters of Seawater Origin and Red Sea Bottom Brines
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Varet, J. Geology of Afar (East Africa); Springer International Publishing: Berlin, Germany, 2018. [Google Scholar]
- Assowe, O.A. Geothermal development in Djibouti Republic. In Proceedings of the ARGeo—6th African Rift Geothermal Conference, Addis Ababa, Ethiopia, 2–4 November 2016. [Google Scholar]
- Omenda, P. Geothermal Outlook in East Africa: Perspectives for Geothermal Development. Available online: http://www.irena.org/-/media/Files/IRENA/Agency/Events/2018/Jan/Geothermal-financing/S1-p1-IRENA-IGA-Presentation-31-01-2018.pdf?la=en&hash=52618994FFFF6833CFF3B51C6199982BC042741C (accessed on 20 July 2018).
- D’Amore, F.; Giusti, D.; Abdallah, A. Geochemistry of the high-salinity geothermal field of Asal, Republic of Djibouti, Africa. Geothermics 1998, 27, 197–210. [Google Scholar] [CrossRef]
- The World Bank. Djibouti Geothermal Exploration Project—Republic of Djibouti—Draft Final Report; The World Bank Group: San Lorenzo in Campo, Italy, 1989. [Google Scholar]
- Japan International Cooperation Agency (JICA). Data Collection Survey on Geothermal Development in the Republic of Djibouti: Final Report, December 2014; JICA: Tokyo, Japan, 2014.
- Upton, K.; ÓDochartaigh, B.É.; Bellwood-Howard, I. Africa Groundwater Atlas: Hydrogeology of Djibouti. Available online: http://earthwise.bgs.ac.uk/index.php/Hydrogeology_of_Djibouti (accessed on 8 November 2018).
- Jalludin, M.; Razack, M. Assessment of hydraulic properties of sedimentary and volcanic aquifer systems under arid conditions in the Republic of Djibouti (Horn of Africa). Hydrogeol. J. 2004, 12, 159–170. [Google Scholar] [CrossRef]
- Vellutini, P.; Piguet, P. Djibouti-Itinéraires géologiques; MECAD: Samrand Ave, South Africa, 1994. [Google Scholar]
- Bamse; Aymatth. Gregory Rift. Available online: https://commons.wikimedia.org/wiki/File:Gregory_Rift_Topographical.svg (accessed on 9 November 2018).
- Barbieri, M.; Boschetti, T.; Petitta, M.; Tallini, M. Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Appl. Geochem. 2005, 20, 2063–2081. [Google Scholar] [CrossRef]
- Barbieri, M.; Morotti, M. Hydrogeochemistry and strontium isotopes of spring and mineral waters from Monte Vulture volcano, Italy. Appl. Geochem. 2003, 18, 117–125. [Google Scholar] [CrossRef]
- Barbieri, M.; Nigro, A.; Petitta, M. Groundwater mixing in the discharge area of San Vittorino Plain (Central Italy): Geochemical characterization and implication for drinking uses. Environ. Earth Sci. 2017, 76, 14. [Google Scholar] [CrossRef]
- Frost, C.D.; Toner, R.N. Strontium isotopic identification of water-rock interaction and ground water mixing. Groundwater 2004, 42, 418–432. [Google Scholar] [CrossRef]
- Naftz, D.L.; Peterman, Z.E.; Spangler, L.E. Using δ87Sr values to identify sources of salinity to a freshwater aquifer, Greater Aneth Oil Field, Utah, USA. Chem. Geol. 1997, 141, 195–209. [Google Scholar] [CrossRef]
- Cortecci, G.; Boschetti, T.; Mussi, M.; Lameli, C.H.; Mucchino, C.; Barbieri, M. New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile. Geochem. J. 2005, 39, 547–571. [Google Scholar] [CrossRef]
- Boschetti, T.; Awadh, S.M.; Salvioli-Mariani, E. The origin and MgCl2-NaCl variations in an athalassic sag pond: Insights from chemical and isotopic data. Aquat. Geochem. 2018, 24, 137–162. [Google Scholar] [CrossRef]
- Boschetti, T.; Toscani, L.; Barbieri, M.; Mucchino, C.; Marino, T. Low enthalpy Na-chloride waters from the Lunigiana and Garfagnana grabens, Northern Apennines, Italy: Tracing fluid connections and basement interactions via chemical and isotopic compositions. J. Volcanol. Geotherm. Res. 2017, 348, 12–25. [Google Scholar] [CrossRef]
- Boschetti, T.; Venturelli, G.; Toscani, L.; Barbieri, M.; Mucchino, C. The Bagni di Lucca thermal waters (Tuscany, Italy): An example of Ca-SO4 waters with high Na/Cl and low Ca/SO4 ratios. J. Hydrol. 2005, 307, 270–293. [Google Scholar] [CrossRef]
- Awaleh, M.O.; Boschetti, T.; Soubaneh, Y.D.; Kim, Y.; Baudron, P.; Kawalieh, A.D.; Ahmed, M.M.; Daoud, M.A.; Dabar, O.A.; Kadieh, I.H.; et al. Geochemical, multi-isotopic studies and geothermal potential evaluation of the complex Djibouti volcanic aquifer (Republic of Djibouti). Appl. Geochem. 2018, in press. [Google Scholar] [CrossRef]
- Woods, T.L.; Fullagar, P.D.; Spruill, R.K.; Sutton, L.C. Strontium isotopes and major elements as tracers of ground water evolution: Example from the Upper Castle Hayne Aquifer of North Carolina. Groundwater 2000, 38, 762–771. [Google Scholar] [CrossRef]
- Jørgensen, N.O.; Andersen, M.S.; Engesgaard, P. Investigation of a dynamic seawater intrusion event using strontium isotopes (87Sr/86Sr). J. Hydrol. 2008, 348, 257–269. [Google Scholar] [CrossRef]
- Nigro, A.; Sappa, G.; Barbieri, M. Strontium isotope as tracers of groundwater contamination. Procedia Earth Planet. Sci. 2017, 17, 352–355. [Google Scholar] [CrossRef]
- Siegel, D.I.; Bickford, M.E.; Orrell, S.E. The use of strontium and lead isotopes to identify sources of water beneath the Fresh Kills landfill, Staten Island, New York, USA. Appl. Geochem. 2000, 15, 493–500. [Google Scholar] [CrossRef]
- Vilomet, J.D.; Angeletti, B.; Moustier, S.; Ambrosi, J.P.; Wiesner, M.; Bottero, J.Y.; Chatelet-Snidaro, L. Application of strontium isotopes for tracing landfill leachate plumes in groundwater. Environ. Sci. Technol. 2001, 35, 4675–4679. [Google Scholar] [CrossRef] [PubMed]
- Awaleh, M.O.; Baudron, P.; Soubaneh, Y.D.; Boschetti, T.; Hoch, F.B.; Egueh, N.M.; Mohamed, J.; Dabar, O.A.; Masse-Dufresne, J.; Gassani, J. Recharge, groundwater flow pattern and contamination processes in an arid volcanic area: Insights from isotopic and geochemical tracers (Bara aquifer system, Republic of Djibouti). J. Geochem. Explor. 2017, 175, 82–98. [Google Scholar] [CrossRef]
- Awaleh, M.O.; Boschetti, T.; Soubaneh, Y.D.; Baudron, P.; Kawalieh, A.D.; Dabar, O.A.; Ahmed, M.M.; Ahmed, S.I.; Daoud, M.A.; Egueh, N.M.; et al. Geochemical study of the Sakalol-Harralol geothermal field (Republic of Djibouti): Evidences of a low enthalpy aquifer between Manda-Inakir and Asal rift settings. J. Volcanol. Geotherm. Res. 2017, 331, 26–52. [Google Scholar] [CrossRef]
- Awaleh, M.O.; Hoch, F.B.; Boschetti, T.; Soubaneh, Y.D.; Egueh, N.M.; Elmi, S.A.; Jalludin, M.; Khaireh, M.A. The geothermal resources of the Republic of Djibouti—II: Geochemical study of the Lake Abhe geothermal field. J. Geochem. Explor. 2015, 159, 129–147. [Google Scholar] [CrossRef]
- Sanjuan, B.; Michard, G.; Michard, A. Origine des substances dissoutes dans les eaux des sources thermales et des forages de la région Asal-Goubhet (République de Djibouti). J. Volcanol. Geotherm. Res. 1990, 43, 333–352. [Google Scholar] [CrossRef]
- Faure, G. Origin of Igneous Rocks: The Isotopic Evidence; Springer-Verlag: Berlin, Germany, 2001. [Google Scholar]
- Furman, T.; Bryce, J.; Rooney, T.; Hanan, B.; Yirgu, G.; Ayalew, D. Heads and tails: 30 million years of the Afar plume. In The Afar Volcanic Province within the East African Rift System; Yirgu, G., Ebinger, C.J., Maguire, P.K.H., Eds.; The Geological Society of London: Bath, UK, 2006; Volume 259, pp. 95–119. [Google Scholar]
- Barrat, J.A.; Jahn, B.M.; Fourcade, S.; Joron, J.L. Magma genesis in an ongoing rifting zone: The Tadjoura Gulf (Afar area). Geochim. Cosmochim. Acta 1993, 57, 2291–2302. [Google Scholar] [CrossRef]
- Deniel, C.; Vidal, P.; Coulon, C.; Vellutini, P.J.; Piguet, P. Temporal evolution of mantle sources during continental rifting: The volcanism of Djibouti (Afar). J. Geophys. Res. Solid Earth 1994, 99, 2853–2869. [Google Scholar] [CrossRef]
- Vidal, P.; Deniel, C.; Vellutini, P.J.; Piguet, P.; Coulon, C.; Vincent, J.; Audin, J. Changes of mantle source in the course of a rift evolution: the Afar case. Geophys. Res. Lett. 1991, 18, 1913–1916. [Google Scholar] [CrossRef]
- Rooney, T.O.; Hanan, B.B.; Graham, D.W.; Furman, T.; Blichert-Toft, J.; Schilling, J.-G. Upper mantle pollution during afar plume–continental rift interaction. J. Petrol. 2012, 53, 365–389. [Google Scholar] [CrossRef] [Green Version]
- Schilling, J.G.; Kingsley, R.H.; Hanan, B.B.; McCully, B.L. Nd-Sr-Pb isotopic variations along the Gulf of Aden—Evidence for Afar mantle plume continental lithosphere interaction. J. Geophys. Res. Solid Earth 1992, 97, 10927–10966. [Google Scholar] [CrossRef]
- Trincherini, P.R.; Baffi, C.; Barbero, P.; Pizzoglio, E.; Spalla, S. Precise determination of strontium isotope ratios by TIMS to authenticate tomato geographical origin. Food Chem. 2014, 145, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.A.; Papanastassiou, D.A.; Tombrello, T.A. Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 1978, 42, 1075–1090. [Google Scholar] [CrossRef]
- Bretzler, A.; Osenbrück, K.; Gloaguen, R.; Ruprecht, J.S.; Kebede, S.; Stadler, S. Groundwater origin and flow dynamics in active rift systems—A multi-isotope approach in the Main Ethiopian Rift. J. Hydrol. 2011, 402, 274–289. [Google Scholar] [CrossRef]
- Rango, T.; Petrini, R.; Stenni, B.; Bianchini, G.; Slejko, F.; Beccaluva, L.; Ayenew, T. The dynamics of central Main Ethiopian Rift waters: Evidence from δD, δ18O and 87Sr/86Sr ratios. Appl. Geochem. 2010, 25, 1860–1871. [Google Scholar] [CrossRef]
- Tesfamichael, T.A. Water-Rock Interaction and Geochemistry of Groundwater in Axum Area (Northern Ethiopia). Ph.D. Thesis, Graz University of Technology, Graz, Austria, 2011. [Google Scholar]
- Pik, R.; Deniel, C.; Coulon, C.; Yirgu, G.; Marty, B. Isotopic and trace element signatures of Ethiopian flood basalts: Evidence for plume–lithosphere interactions. Geochim. Cosmochim. Acta 1999, 63, 2263–2279. [Google Scholar] [CrossRef]
- McArthur, J.M. Recent trends in strontium isotope stratigraphy. Terra Nova 1994, 6, 331–358. [Google Scholar] [CrossRef]
- Scher, H.D.; Griffith, E.M.; Buckley, W.P. Accuracy and precision of 88Sr/86Sr and 87Sr/86Sr measurements by MC-ICPMS compromised by high barium concentrations. Geochem. Geophys. Geosyst. 2014, 15, 499–508. [Google Scholar] [CrossRef]
- Chatterjee, J.; Singh, S.K. 87Sr/86Sr and major ion composition of rainwater of Ahmedabad, India: Sources of base cations. Atmos. Environ. 2012, 63, 60–67. [Google Scholar] [CrossRef]
- Amsellem, E.; Moynier, F.; Day, J.M.; Moreira, M.; Puchtel, I.S.; Teng, F.Z. The stable strontium isotopic composition of ocean island basalts, mid-ocean ridge basalts, and komatiites. Chem. Geol. 2018, 483, 595–602. [Google Scholar] [CrossRef]
- Faure, G. Principle of Isotope Geology, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1986. [Google Scholar]
- Dekov, V.M.; Egueh, N.M.; Kamenov, G.D.; Bayon, G.; Lalonde, S.V.; Schmidt, M.; Liebetrau, V.; Munnik, F.; Fouquet, Y.; Tanimizu, M.; et al. Hydrothermal carbonate chimneys from a continental rift (Afar Rift): Mineralogy, geochemistry, and mode of formation. Chem. Geol. 2014, 387, 87–100. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey: Reston, VA, USA, 2013; p. 497.
- Warren, J.K. Evaporites—A Geological Compendium, 2nd ed.; Springer International Publishing: Berlin, Germany, 2016. [Google Scholar]
- Shikazono, N. Geochemical and Tectonic Evolution of Arc-Backarc Hydrothermal Systems—Implication for the Origin of Kuroko and epithermal Vein—Type Mineralizations and the Global Geochemical Cycle; Elsevier Science B.V.: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Boschetti, T.; Cortecci, G.; Bolognesi, L. Chemical and isotopic compositions of the shallow groundwater system of Vulcano Island, Aeolian Archipelago, Italy: An update. GeoActa 2003, 2, 1–34. [Google Scholar]
- Boschetti, T.; Toscani, L.; Iacumin, P.; Selmo, E. Oxygen, hydrogen, boron and lithium isotope data of a natural spring water with an extreme composition: A fluid from the dehydrating slab? Aquat. Geochem. 2017, 23, 299–313. [Google Scholar] [CrossRef]
- Anschutz, P.; Blanc, G.; Stille, P. Origin of fluids and the evolution of the Atlantis II deep hydrothermal system, Red Sea: Strontium isotope study. Geochim. Cosmochim. Acta 1995, 59, 4799–4808. [Google Scholar] [CrossRef]
- Blanc, G.; Boulègue, J.; Michard, A. Hydrothermal activity in Atlantis II Deep (Red Sea): Chemical and isotopic constraints from May 1985 water sampling. Sci. Géol. Bull. 1994, 47, 1–14. [Google Scholar] [CrossRef]
- Faure, G.; Jones, L.M. Anomalous strontium in the Red Sea brines. In Hot Brines and Recent Heavy Metal Deposits in the Red Sea—A Geochemical and Geophysical Account; Degens, E.T., Ross, D.A., Eds.; Springer-Verlag: Berlin, Germany, 1969; pp. 243–250. [Google Scholar]
- Pierret, M.C.; Clauer, N.; Bosch, D.; Blanc, G.; France-Lanord, C. Chemical and isotopic (87Sr/86Sr, δ18O, δD) constraints to the formation processes of Red-Sea brines. Geochim. Cosmochim. Acta 2001, 65, 1259–1275. [Google Scholar] [CrossRef]
- Zierenberg, R.A.; Shanks III, W.C. Isotopic constraints on the origin of the Atlantis II, Suakin and Valdivia brines, Red Sea. Geochim. Cosmochim. Acta 1986, 50, 2205–2214. [Google Scholar] [CrossRef]
- Albarède, F.; Michard, A.; Minster, J.F.; Michard, G. 87Sr/86Sr ratios in hydrothermal waters and deposits from the East Pacific Rise at 21° N. Earth Planet. Sci. Lett. 1981, 55, 229–236. [Google Scholar] [CrossRef]
- Elderfield, H.; Greaves, M.J. Strontium isotope geochemistry of Icelandic geothermal systems and implications for sea water chemistry. Geochim. Cosmochim. Acta 1981, 45, 2201–2212. [Google Scholar] [CrossRef]
- Von Damm, K.L. Seafloor hydrothermal activity: black smoker chemistry and chimneys. Annu. Rev. Earth Planet. Sci. 1990, 18, 173–204. [Google Scholar] [CrossRef]
- Menzies, M.; Seyfried Jr, W.E. Basalt-seawater interaction: trace element and strontium isotopic variations in experimentally altered glassy basalt. Earth Planet. Sci. Lett. 1979, 44, 463–472. [Google Scholar] [CrossRef]
- Voigt, M. Novel Chemical Tracers for Quantifying Marine Water-Rock Interactions. Ph.D. Thesis, Université de Toulouse, Toulouse, France, 2017. [Google Scholar]
- Glynn, P.D.; Reardon, E.J.; Plummer, L.N.; Busenberg, E. Reaction paths and equilibrium end-points in solid-solution aqueous solution systems. Geochim. Cosmochim. Acta 1990, 54, 267–282. [Google Scholar] [CrossRef]
- Kebede, S. Groundwater in Ethiopia—Features, Numbers and Opportunities; Springer-Verlag: Berlin, Germany, 2013. [Google Scholar]
- Jaluddin, M. Contribution à l’étude hydrogeologique des systémes aquiféres de la plaine du Hanle. Sci. Environ. 1989. Available online: http://www.scienceetenvironnement.dj/documents/Revue%20n%C2%B01-1989/Contribution%20%C3%A0%20l’%C3%A9tude%20hydrogeologique%20des%20syst%C3%A9mes%20aquif%C3%A9res%20de%20la%20plaine%20du%20Hanle..pdf (accessed on 20 November 2018).
- Fichtner. Projet pour l’évaluation des ressources géothermiques; Projet No. 610-1175; Fichtner GmbH & Co.: Stuttgart, Germany, 1981; p. 137. [Google Scholar]
- Barberi, F.; Civetta, L.; Varet, J. Sr isotopic composition of Afar volcanics and its implication for mantle evolution. Earth Planet. Sci. Lett. 1980, 50, 247–259. [Google Scholar] [CrossRef]
- Faure, G.; Mensing, T.M. Isotopes: Principles and Applications, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Hoefs, J. Stable Isotope Geochemistry, 8th ed.; Springer International Publishing AG, part of Springer Nature: Basel, Switzerland, 2018. [Google Scholar]
- Dickin, A.P. Radiogenic Isotope Geology, 3rd ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Nier, A.O. The isotopic constitution of Strontium, Barium, Bismuth, Thallium and Mercury. Phys. Rev. 1938, 5, 275–278. [Google Scholar] [CrossRef]
- Taylor, H.P. Water/rock interactions and the origin of H2O in granitic batholiths: Thirtieth William Smith lecture. J. Geol. Soc. 1977, 133, 509–558. [Google Scholar] [CrossRef]
- McCulloch, M.T.; Gregory, R.T.; Wasserburg, G.J.; Taylor Jr, H.P. Sm-Nd, Rb-Sr, and 18O/16O isotopic systematics in an oceanic crustal section: Evidence from the Samail Ophiolite. J. Geophys. Res. Solid Earth 1981, 86, 2721–2735. [Google Scholar] [CrossRef]
- O’Nions, R.K.; Carter, S.R.; Evensen, N.M.; Hamilton, P.J. Upper-mantle geochemistry. In The Sea—Ideas and Observations of Progress in the Study of the Seas; Emiliani, C., Ed. John Wiley & Sons: Hoboken, NJ, USA, 1981; Volume 7, pp. 49–71. [Google Scholar]
- Barbieri, E. Evoluzione temporale dei Processi di Rifting Continentale ed interazione con un Punto Caldo di Mantello; Università degli Studi di Modena e Reggio-Emilia: Modena, Italy, 2015. [Google Scholar]
- Fouillac, A.M.; Fouillac, C.; Cesbron, F.; Pillard, F.; Legendre, O. Water-rock interaction between basalt and high-salinity fluids in the Asal Rift, Republic of Djibouti. Chem. Geol. 1989, 76, 271–289. [Google Scholar] [CrossRef]
- Berndt, M.E.; Seyfried Jr, W.E.; Beck, J.W. Hydrothermal alteration processes at midocean ridges: Experimental and theoretical constraints from Ca and Sr exchange reactions and Sr isotopic ratios. J. Geophys. Res. Solid Earth 1988, 93, 4573–4583. [Google Scholar] [CrossRef]
- McDermott, J.M.; Sylva, S.P.; Ono, S.; German, C.R.; Seewald, J.S. Geochemistry of fluids from Earth’s deepest ridge-crest hot-springs: Piccard hydrothermal field, Mid-Cayman Rise. Geochim. Cosmochim. Acta 2018, 228, 95–118. [Google Scholar] [CrossRef] [Green Version]
- Bosch, B.; Deschamps, J.; Leleu, M.; Lopoukhine, M.; Marce, A.; Vilbert, C. The geothermal zone of Lake Assal (FTAI), geochemical and experimental studies. Geothermics 1977, 5, 165–175. [Google Scholar] [CrossRef]
- Kafri, U.; Yechieli, Y.; Wollman, S.; Shalev, E. A possible brine supply from the Afar continental endorheic hyper saline lakes to the Red Sea bottom brine pools. Hydrogeol. J. 2018, 8, 2867–2874. [Google Scholar] [CrossRef]
Sample Name | Latitude N | Longitude E | Sample Type | * Chemical Facies | T (°C) | pH | * TDS (g/L) | Sr (mg/L) | 87Sr/86Sr |
---|---|---|---|---|---|---|---|---|---|
Oudgini | 11°30.704’ | 41°56.500’ | spring | Na-Cl | 40 | 8.18 | 1.80 | 0.198 | 0.70635 |
Agna | 11°34.059’ | 41°54.780’ | spring | Na-Cl | 41 | 8.21 | 1.67 | 0.094 | 0.70629 |
Minkillé | 11°39.253’ | 41°57.032’ | spring | Na-Cl | 52 | 7.81 | 2.07 | 0.533 | 0.70430 |
Sâgallé | 11°39.151’ | 41°54.646’ | spring | Na-Cl | 39 | 8.39 | 1.53 | 0.131 | 0.70649 |
Ease-moydo | 11°40.302’ | 41°53.155’ | spring | Na-Cl | 36 | 8.75 | 2.69 | 0.326 | 0.70634 |
Daggirou | 11°36.447’ | 41°58.613’ | spring | Na-Cl | 38 | 8.19 | 2.29 | 0.167 | 0.70559 |
Dahotto | 11°37.531’ | 41°57.068’ | spring | Na-Cl | 40 | 8.01 | 2.46 | 0.202 | 0.70593 |
Galafi | 11°42.203’ | 41°50.985’ | borehole | Na-HCO3 | 36 | 7.96 | 0.68 | 0.081 | 0.70488 |
Hanlé 1 | 11°21.492’ | 42°8.349’ | borehole | Na-HCO3 | 36 | 7.90 | 0.44 | 0.690 | 0.70641 |
Hanlé 2 | 11°23.921’ | 42°4.715’ | borehole | Na-HCO3 | 34 | 8.30 | 0.68 | 0.156 | 0.70656 |
Daoudaouya | 11°45.623’ | 42°8.385’ | borehole | Mg/Na-HCO3 | 40 | 7.16 | 0.29 | 0.367 | 0.70623 |
Mokoyta | 11°27.083’ | 42°15.991’ | well | Na-Cl | 32 | 7.89 | 1.89 | 0.432 | 0.70600 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boschetti, T.; Awaleh, M.O.; Barbieri, M. Waters from the Djiboutian Afar: A Review of Strontium Isotopic Composition and a Comparison with Ethiopian Waters and Red Sea Brines. Water 2018, 10, 1700. https://doi.org/10.3390/w10111700
Boschetti T, Awaleh MO, Barbieri M. Waters from the Djiboutian Afar: A Review of Strontium Isotopic Composition and a Comparison with Ethiopian Waters and Red Sea Brines. Water. 2018; 10(11):1700. https://doi.org/10.3390/w10111700
Chicago/Turabian StyleBoschetti, Tiziano, Mohamed Osman Awaleh, and Maurizio Barbieri. 2018. "Waters from the Djiboutian Afar: A Review of Strontium Isotopic Composition and a Comparison with Ethiopian Waters and Red Sea Brines" Water 10, no. 11: 1700. https://doi.org/10.3390/w10111700
APA StyleBoschetti, T., Awaleh, M. O., & Barbieri, M. (2018). Waters from the Djiboutian Afar: A Review of Strontium Isotopic Composition and a Comparison with Ethiopian Waters and Red Sea Brines. Water, 10(11), 1700. https://doi.org/10.3390/w10111700