Robust Assessment of Uncertain Freshwater Changes: The Case of Greece with Large Irrigation—and Climate-Driven Runoff Decrease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greece and Its Catchments
2.2. Hydro-Climatic Data
2.3. Land- and Water-Use Data for Irrigation
2.4. Assessing Freshwater Conditions and Changes
= R2 − ((ΔP − ΔETclim) − ΔETirr),
2.5. Uncertainty Analysis
3. Results and Discussion
3.1. General Approach
3.2. Freshwater Changes
3.3. Uncertainty in Freshwater Changes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pettersson, L.G.M.; Henchman, R.H.; Nilsson, A. Water—The most anomalous liquid. Chem. Rev. 2016, 116, 7459–7462. [Google Scholar] [CrossRef] [PubMed]
- Nature Editorial. Get water governance on the global agenda. Nature 2016, 540, 169–170. [Google Scholar] [CrossRef] [Green Version]
- World Economic Forum. The Global Risks Report 2018. Available online: http://www3.weforum.org/docs/WEF_GRR18_Report.pdf (accessed on 30 September 2018).
- Bosson, E.; Sabel, U.; Gustafsson, L.G.; Sassner, M.; Destouni, G. Influences of shifts in climate, landscape and permafrost on terrestrial hydrology. J. Geophys. Res. Atmos. 2012, 117, D05120. [Google Scholar] [CrossRef]
- Jaramillo, F.; Destouni, G. Developing water change spectra and distinguishing change drivers worldwide. Geophys. Res. Lett. 2014, 41, 8377–8386. [Google Scholar] [CrossRef] [Green Version]
- Elmhagen, B.; Destouni, G.; Angerbjörn, A.; Borgström, S.; Boyd, E.; Cousins, S.A.O.; Dalén, L.; Ehrlén, J.; Ermold, M.; Hambäck, P.A.; et al. Interacting effects of change in climate, human population, land use and water use on biodiversity and ecosystem services. Ecol. Soc. 2015, 20, 23. [Google Scholar] [CrossRef]
- Destouni, G.; Jaramillo, F.; Prieto, C. Hydroclimatic shifts driven by human water use for food and energy production. Nat. Clim. Chang. 2013, 3, 213–217. [Google Scholar] [CrossRef]
- Jaramillo, F.; Destouni, G. Local flow regulation and irrigation raise global human water consumption and footprint. Science 2015, 350, 1248–1251. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, Z.; Ferreira, C.S.S.; Walsh, R.P.D.; Ferreira, A.J.D.; Destouni, G. Urbanization development under climate change: Hydrological responses in a peri-urban Mediterranean catchment. Land Degrad. Dev. 2017, 28, 2207–2221. [Google Scholar] [CrossRef]
- Montanari, A.; Young, G.; Savenije, H.H.G.; Hughes, D.; Wagener, T.; Ren, L.L.; Koutsoyiannis, D.; Cudennec, C.; Toth, E.; Grimaldi, S.; et al. “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrol. Sci. J. 2013, 58, 1256–1275. [Google Scholar] [CrossRef] [Green Version]
- Smettem, K.R.J. Welcome address for the new ’Ecohydrology’ Journal. Ecohydrology 2008, 1, 1–2. [Google Scholar] [CrossRef]
- Sivapalan, M.; Savenije, H.H.G.; Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Process 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Karlsson, J.M.; Lyon, S.W.; Destouni, G. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. J. Hydrol. 2012, 464–465, 459–466. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Woods, R.A.; Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Chang. 2014, 4, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, M.J.; Jaramillo, F.; Destouni, G. Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas. J. Hydrol. 2015, 529, 134–145. [Google Scholar] [CrossRef]
- Orth, R.; Destouni, G. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun. 2018, 9, 3602. [Google Scholar] [CrossRef] [PubMed]
- Destouni, G.; Asokan, S.M.; Jarsjö, J. Inland hydro-climatic interaction: Effects of human water use on regional climate. Geophys. Res. Lett. 2010, 37, L18402. [Google Scholar] [CrossRef]
- De Haan, J. How emergence arises. Ecol. Complex. 2006, 3, 293–301. [Google Scholar] [CrossRef]
- Baresel, C.; Destouni, G. Novel quantification of coupled natural and cross-sectoral water and nutrient/pollutant flows for environmental management. Environ. Sci. Technol. 2005, 39, 6182–6190. [Google Scholar] [CrossRef] [PubMed]
- Thorslund, J.; Jarsjo, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecol. Eng. 2017, 108 Pt B, 489–497. [Google Scholar] [CrossRef]
- Bring, A.; Asokan, S.M.; Jaramillo, F.; Jarsjö, J.; Levi, L.; Pietroń, J.; Prieto, C.; Rogberg, P.; Destouni, G. Implications of freshwater flux data from the CMIP5 multi-model output across a set of Northern Hemisphere drainage basins. Earth’s Future 2015, 3, 206–217. [Google Scholar] [CrossRef]
- Jarsjö, J.; Asokan, S.M.; Prieto, C.; Bring, A.; Destouni, G. Hydrological responses to climate change conditioned by historic alterations of land-use and water-use. Hydrol. Earth Syst. Sci. 2012, 16, 1335–1347. [Google Scholar] [CrossRef] [Green Version]
- Asokan, S.M.; Rogberg, P.; Bring, A.; Jarsjö, J.; Destouni, G. Climate model performance and change projection for freshwater fluxes: Comparison for irrigated areas in Central and South Asia. J. Hydrol. Reg. Stud. 2016, 5, 48–65. [Google Scholar] [CrossRef]
- Jaramillo, F.; Destouni, G. Comment on “Planetary boundaries: Guiding human development on a changing planet”. Science 2017, 348, 1217. [Google Scholar] [CrossRef] [PubMed]
- Lehner, B.; Verdin, K.; Jarvis, A. HydroSHEDS Technical Documentation. World Wildlife Fund US, Washington, D.C. Available online: http://hydrosheds.cr.usgs.gov (accessed on 24 April 2013).
- Mitchell, T.D.; Jones, P.D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Clim. 2005, 25, 693–712. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Clim. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- GRDC. Global Runoff Data Centre, Koblenz, Germany. Available online: http://www.bafg.de (accessed on 3 June 2013).
- Greek Water Management Authority. Water Management Plan for the Greek River Basin Districts (GR06); Greek Water Management Authority: Athens, Greece, 2013; Volume 2. [Google Scholar]
- Organisation for Economic Co-operation and Development, Statistics. Extracted by Selecting Environmental Indicators for Agriculture, Environmental Performance of Agriculture 2013, Water Resources, Enviromental Indicator: Irrigation, Irrigated Areas (ha) and Irrigation Freshwater Withdrawals (million m3). Available online: http://stats.oecd.org/Index.aspx# (accessed on 4 May 2015).
- Organisation for Economic Co-Operation and Development, Statistics. Extracted by Selecting Environment\Water\Freshwater Abstractions (million m3). Variable: Irrigation\Total freshwater for Greece. Available online: http://stats.oecd.org/Index.aspx# (accessed on 4 May 2015).
- Siebert, S.; Henrich, V.; Frenken, K.; Burke, J. Global Map of Irrigation Areas Version 5; Rheinische Friedrich-Wilhelms-University: Bonn, Germany; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Karamanos, A.; Aggelides, S.; Londra, P. Irrigation Systems Performance in Greece; Options Méditerranéennes, Series B, No. 52; CIHEAM: Bari, Italy, 2005. [Google Scholar]
- Jaramillo, F.; Prieto, C.; Lyon, S.W.; Destouni, G. Multimethod assessment of evapotranspiration shifts due to non-irrigated agricultural development in Sweden. J. Hydrol. 2013, 484, 55–62. [Google Scholar] [CrossRef]
- Langbein, W.B. Annual runoff in the United States. Geol. Surv. Circ. 1949, 52. [Google Scholar] [CrossRef]
- Turc, L. “The water balance of soils”, relation between precipitation, evaporation and flow. Ann. Agron. 1954, 5, 491–569. [Google Scholar]
- Adam, J.C.; Lettenmaier, D.P. Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res. 2003, 108, 1–14. [Google Scholar] [CrossRef]
- Adam, J.C.; Clark, E.A.; Lettenmaier, D.P.; Wood, E.F. Correction of global precipitation products for orographic effects. J. Clim. 2006, 19, 15–38. [Google Scholar] [CrossRef]
- Asokan, S.M.; Destouni, G. Irrigation effects on hydro-climatic change: Basin-wise water balance-constrained quantification and cross-regional comparison. Surv. Geophys. 2014, 35, 879–895. [Google Scholar] [CrossRef]
Data in Mainland Greece | Data in Peloponnese | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Catch-ment (Sta-tion) | Area a (km2) | Pb (mm/year) | Rc (mm/year) | ETg (mm/year) | ET/P | District | Area h (km2) | Ri (mm/year) | ETi (mm/year) | Peffm (mm/year) | ET/Peff |
Mesta-Nestos (Teme-nos) | 4948 | 666 | 283 d | 383 | 0.57 | Northern Peloponnese (NP) | 6108 | 312 j | 472 j | 784 | 0.60 |
Almo-paios (Prof Ilias) | 993 | 487 | 189 e | 298 | 0.61 | Western Peloponnese (WP) | 7235 | 456 k | 559 k | 1015 | 0.55 |
Aliak-mon (Ila-rion) | 5002 | 763 | 315 f | 448 | 0.59 | Eastern Peloponnese (EP) | 8442 | 172 l | 452 l | 624 | 0.72 |
Catchments | Total | Mainland | Peloponnese | Ionian | Aegean | |||||
---|---|---|---|---|---|---|---|---|---|---|
Total area a (km2) | 178,984 | 157,550 | 21,434 | 31,958 | 147,026 | |||||
Time Period | Per1b | Per2b | Per1 | Per2 | Per1 | Per2 | Per1 | Per2 | Per1 | Per2 |
Tc (°C) | 12.1 | 12.4 | 11.7 | 12.1 | 15 | 14.8 | 14.4 | 14.4 | 11.6 | 12 |
Pc (mm/year) | 676 | 630 | 663 | 622 | 773 | 693 | 861 | 767 | 637 | 602 |
ET/Pd | 0.59 | 0.59 | 0.62 | 0.59 | 0.59 | |||||
Iwwe (mm/year) | 0.692/2736 = 253 | 8.25/13,963 = 591 | 253 | 591 | 253 | 591 | 253 | 591 | 253 | 591 |
Aai (km2) | 2736 e | 11,046 f | 2394 g | 9665 f | 342 g | 1381 f | 547 g | 2255 f | 2189 g | 8791 f |
Aai_rat | 0.015 h | 11,046/178,984 = 0.062 | 0.015 h | 9665/157,550 = 0.061 | 0.016 h | 1381/21,434 = 0.064 | 0.017 h | 2255/31,958 = 0.071 | 0.015 h | 8791/147,026 = 0.06 |
Total Regional Catchment | |||
---|---|---|---|
Scenario | Variation | Per1 | Per2 |
Base P | No correction of P observation data (mm/year) | 676 | 630 |
−46 | |||
Alt.1 P | Undercatch correction of P observation data (mm/year) | 734 | 686 |
−48 | |||
Alt.2 P | Undercatch and orographic correction of P observation data (mm/year) | 769 | 718 |
−51 | |||
Base ET/P | Mean ET/P | 0.59 | |
Alt.1 ET/P | Min ET/P | 0.55 | |
Alt.2 ET/P | Max ET/P | 0.72 | |
Base Iww | Mean Iww1, Min Iww2 (mm/year) | 253 | 591 |
338 | |||
Alt.1 Iww | Min Iww1, Min Iww2 (mm/year) | 175 | 591 |
416 | |||
Alt.2 Iww | Max Iww1, Min Iww2 (mm/year) | 331 | 591 |
260 | |||
Alt.3 Iww | Min Iww1, Max Iww2 (mm/year) | 175 | 747 |
572 | |||
Alt.4 Iww | Mean Iww1, Max Iww2 (mm/year) | 253 | 747 |
494 | |||
Alt.5 Iww | Max Iww1, Max Iww2 (mm/year) | 331 | 747 |
416 | |||
Base αirr | Max αirr | 0.25 | |
Alt.1 αirr | Min αirr | 0.20 |
Type of Scenario and Uncertainty | ΔP (mm/year) | ΔETclim (mm/year) | ΔETirr (mm/year) | ΔET (mm/year) | ΔRclim (mm/year) | ΔRirr (mm/year) | ΔR (mm/year) |
---|---|---|---|---|---|---|---|
P scenarios ± Irrigation uncertainty | −46 (Base) | −12.5 | 24.9 ± 6 | −33.5 | −70.9 ± 6 | ||
−48.4 (Alt. 1) | −11.5 | 25.9 ± 6 | −36.9 | −74.3 ± 6 | |||
−51 (Alt. 2) | −10 | 27.4 ± 6 | −41 | −78.4 ± 6 | |||
Irrigation (Iww) scenarios ± P uncertainty | 32.6 (Base) | 21.3 ± 1.3 | −32.6 | −69.7 ± 3.8 | |||
33.8 (Alt. 1) | 22.5 ± 1.3 | −33.8 | −70.9 ± 3.8 | ||||
31.4 (Alt. 2) | 20.1 ± 1.3 | −31.4 | −68.5 ± 3.8 | ||||
43.4 (Alt. 3) | 32.1 ± 1.3 | −43.4 | −80.6 ± 3.8 | ||||
42.2 (Alt. 4) | 30.9 ± 1.3 | −42.2 | −79.4 ± 3.8 | ||||
41 (Alt. 5) | 29.7 ± 1.3 | −41 | −78.2 ± 3.8 | ||||
All scenarios ± Total uncertainty | −48.5 ± 2.5 | −11.3 ± 1.3 | 37.4 ± 6 | 26.1 ± 7.3 | −37.1 ± 3.8 | −37.4 ± 6 | −74.6 ± 9.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Destouni, G.; Prieto, C. Robust Assessment of Uncertain Freshwater Changes: The Case of Greece with Large Irrigation—and Climate-Driven Runoff Decrease. Water 2018, 10, 1645. https://doi.org/10.3390/w10111645
Destouni G, Prieto C. Robust Assessment of Uncertain Freshwater Changes: The Case of Greece with Large Irrigation—and Climate-Driven Runoff Decrease. Water. 2018; 10(11):1645. https://doi.org/10.3390/w10111645
Chicago/Turabian StyleDestouni, Georgia, and Carmen Prieto. 2018. "Robust Assessment of Uncertain Freshwater Changes: The Case of Greece with Large Irrigation—and Climate-Driven Runoff Decrease" Water 10, no. 11: 1645. https://doi.org/10.3390/w10111645
APA StyleDestouni, G., & Prieto, C. (2018). Robust Assessment of Uncertain Freshwater Changes: The Case of Greece with Large Irrigation—and Climate-Driven Runoff Decrease. Water, 10(11), 1645. https://doi.org/10.3390/w10111645