Characterizing Water Pollution Potential in Life Cycle Impact Assessment Based on Bacterial Growth and Water Quality Models
Abstract
:1. Introduction
2. Methods and Materials
2.1. Bacterial Depletion of Oxygen
2.2. Incorporation of Water Quality Models into the LCA Framework
2.2.1. Descriptions of 1D and 2D
2.2.2. Development of 1DCCM and 2DCCM
2.3. Identification of Atrazine and Its Metabolites
3. Results
3.1. Characterization Factors of BDO
3.2. Application of 1DCCM and 2DCCM
3.3. Results of IBDO Obtained from 2DCCM
3.4. Comparison of Total Environmental Impact and IBDO for Different Scenarios
3.5. Contribution of Impact Categories on Total Environmental Impact
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alfonsin, C.; Lebrero, R.; Estrada, J.M.; Muñoz, R.; Kraakman, N.B.; Feijoo, G.; Moreira, M.T. Selection of odour removal technologies in wastewater treatment plants: A guideline based on Life Cycle Assessment. J. Environ. Manag. 2015, 149, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Harder, R.; Heimersson, S.; Svanstrom, M.; Peters, G.M. Including pathogen risk in life cycle assessment of wastewater management. 1. Estimating the burden of disease associated with pathogens. Environ. Sci. Technol. 2014, 48, 9438–9445. [Google Scholar] [CrossRef] [PubMed]
- Heimersson, S.; Harder, R.; Peters, G.M.; Svanstrom, M. Including pathogen risk in life cycle assessment of wastewater management. 2. Quantitative comparison of pathogen risk to other impacts on human health. Environ. Sci. Technol. 2014, 48, 9446–9453. [Google Scholar] [CrossRef] [PubMed]
- Pasqualino, J.C.; Meneses, M.; Abella, M.; Castells, F. LCA as a decision support tool for the environmental improvement of the operation of a municipal wastewater treatment plant. Environ. Sci. Technol. 2009, 43, 3300–3307. [Google Scholar] [CrossRef] [PubMed]
- Risch, E.; Gutierrez, O.; Roux, P.; Boutin, C.; Corominas, L. Life cycle assessment of urban wastewater systems: Quantifying the relative contribution of sewer systems. Water Res. 2015, 77, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Clavreul, J.; Scheutz, C.; Christensen, T.H. Influence of data collection schemes on the Life Cycle Assessment of a municipal wastewater treatment plant. Water Res. 2014, 56, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Corominas, L.; Foley, J.; Guest, J.S.; Hospido, A.; Larsen, H.F.; Morera, S.; Shaw, A. Life cycle assessment applied to wastewater treatment: State of the art. Water Res. 2013, 47, 5480–5492. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hou, X.; Zhang, W.; Xiong, W.; Wang, L.; Zhang, S.; Wang, P.; Wang, C. Integration of life cycle assessment and statistical analysis to understand the influence of rainfall on WWTPs with combined sewer systems. J. Clean. Prod. 2018, 172, 2521–2530. [Google Scholar] [CrossRef]
- Bai, S.; Zhu, X.; Wang, X.; Ren, N. Identify stakeholders’ understandings of life cycle assessment results on wastewater related issues. Sci. Total Environ. 2018, 622–623, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Zhao, X.; Wang, D.; Zhang, X.; Ren, N. Engaging multiple weighting approaches and Conjoint Analysis to extend results acceptance of life cycle assessment in biological wastewater treatment technologies. Bioresour. Technol. 2018, 265, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Basset-Mens, C.; Anibar, L.; Durand, P.; van der Werf, H.M.G. Spatialised fate factors for nitrate in catchments: Modelling approach and implication for LCA results. Sci. Total Environ. 2006, 367, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Gallego, A.; Rodriguez, L.; Hospido, A.; Moreira, M.T.; Feijoo, G. Development of regional characterization factors for aquatic eutrophication. Int. J. Life Cycle Assess. 2010, 15, 32–43. [Google Scholar] [CrossRef]
- Azevedo, L.B.; Henderson, A.D.; van Zelm, R.; Jolliet, O.; Huijbregts, M.A.J. Assessing the importance of spatial variability versus model choices in life cycle impact assessment: The case of freshwater eutrophication in europe. Environ. Sci. Technol. 2013, 47, 13565–13570. [Google Scholar] [CrossRef] [PubMed]
- Helmes, R.J.K.; Huijbregts, M.A.J.; Henderson, A.D.; Jolliet, O. Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. Int. J. Life Cycle Assess. 2012, 17, 646–654. [Google Scholar] [CrossRef]
- Struijs, J.; Beusen, A.; de Zwart, D.; Huijbregts, M. Characterization factors for inland water eutrophication at the damage level in life cycle impact assessment. Int. J. Life Cycle Assess. 2011, 16, 59–64. [Google Scholar] [CrossRef]
- Morelli, B.; Hawkins, T.R.; Niblick, B.; Henderson, A.D.; Golden, H.E.; Compton, J.E.; Cooter, E.J.; Bare, J.C. Critical review of eutrophication models for life cycle assessment. Environ. Sci. Technol. 2018, 52, 9562–9578. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.O.; Almeida, C.A.; Calderon, M.; Mallea, M.A.; Gonzalez, P. Assessment of the water self-purification capacity on a river affected by organic pollution: Application of chemometrics in spatial and temporal variations. Environ. Sci. Pollut. Res. Int. 2014, 21, 10583–10593. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Su, Y.; Zheng, B. Analysis of current situation of water pollution and its control strategy for Chinese river basins. J. China Inst. Water. 2004, 4. [Google Scholar] [CrossRef]
- MEP. Report on the State of the Environment in China; Ministry of Environmental Protection: Beijing, China, 2014.
- MEP. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002); China Environment Press: Beijing, China, 2002.
- MEP. Surface Water Quantity Standards (GB8938-2002); China Environment Press: Beijing, China, 2002.
- Pizzol, M.; Weidema, B.; Brandão, M.; Osset, P. Monetary valuation in life cycle assessment: A review. J. Clean. Prod. 2015, 86, 170–179. [Google Scholar] [CrossRef]
- Renou, S.; Thomas, J.S.; Aoustin, E.; Pons, M.N. Influence of impact assessment methods in wastewater treatment LCA. J. Clean. Prod. 2008, 16, 1098–1105. [Google Scholar] [CrossRef]
- Zang, Y.W.; Li, Y.; Wang, C.; Zhang, W.L.; Xiong, W. Towards more accurate life cycle assessment of biological wastewater treatment plants: A review. J. Clean. Prod. 2015, 107, 676–692. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, J.; Zhang, X.; Wang, L.; Ma, F. Evaluation of bioaugmentation using multiple life cycle assessment approaches: A case study of constructed wetland. Bioresour. Technol. 2017, 244, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.G.; Li, S.B.; Jia, P.; Qi, C.J.; Ding, F. A review of surface water quality models. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Guinée, J.B. Handbook on life cycle assessment operational guide to the ISO standards. Int. J. Life Cycle Assess. 2001, 7, 311–313. [Google Scholar] [CrossRef]
- Scientific Applications International Corporation (SAIC); Curran, M.A. Life-Cycle Assessment: Principles and Practice; National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Cincinnati, OH, USA, 2006.
- Rittmann, B.E.; McCarty, P.L. Environmental Biotechnology: Principles and Applications; Tata McGraw-Hill Education: New York, NY, USA, 2012. [Google Scholar]
- Wu, J.S.; Ahlert, R.C. Applications of a Steady-State, One-Dimensional Water-Quality Model. Water Resour. Bull. 1979, 15, 660–670. [Google Scholar] [CrossRef]
- Lap, B.Q.; Mori, K.; Inoue, E. A one-dimensional model for water quality simulation in medium- and small-sized rivers. Paddy Water Environ. 2007, 5, 5–13. [Google Scholar] [CrossRef]
- Sudjono, P.; Koga, K.; Araki, H.; Booij, N. Development and application of one-dimensional water quality model for channel networks and tidal rivers. Hydraul. Eng. Softw. VI 1996, 18, 309–319. [Google Scholar]
- Buchak, E.M.; Edinger, J.E. User Guide for LARM2: A Longitudinal-Vertical, Time-Varying Hydrodynamic Reservoir Model; Edinger (Je) Associates Inc.: Wayne, PA, USA, 1982. [Google Scholar]
- Martin, J.L. Application of two-dimensional water quality model. J. Environ. Eng. 1988, 114, 317–336. [Google Scholar] [CrossRef]
- Covelli, P.; Marsili-Libelli, S.; Pacini, G. SWAMP: A two-dimensional hydrodynamic and quality modeling platform for shallow waters. Numer. Methords Part Differ Equ. 2002, 18, 663–687. [Google Scholar] [CrossRef]
- Bellekom, S.; Potting, J.; Benders, R. Feasibility of applying site-dependent impact assessment of acidification in LCA. Int. J. Life Cycle Assess. 2002, 11, 417–424. [Google Scholar] [CrossRef]
- Zimmermann, T. Parameterized tool for site specific LCAs of wind energy converters. Int. J. Life Cycle Assess. 2013, 18, 49–60. [Google Scholar] [CrossRef]
- Sleeswijk, A.W. Regional LCA in a global perspective. A basis for spatially differentiated environmental life cycle assessment. Int. J. Life Cycle Assess. 2011, 16, 106–112. [Google Scholar] [CrossRef]
- Boulay, A.M.; Bulle, C.; Bayart, J.B.; Deschenes, L.; Margni, M. Regional characterization of freshwater use in LCA: Modeling direct impacts on human health. Environ. Sci. Technol. 2011, 45, 8948–8957. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Dale, B.E. Regional variations in greenhouse gas emissions of biobased products in the United States-corn-based ethanol and soybean oil. Int. J. Life Cycle Assess. 2009, 14, 540–546. [Google Scholar] [CrossRef]
Empirical Formula | Environmental Condition | Molecular Weight | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C5H7O2N | Mixed culture | 113 | 0.2 | 1 | 0.2 | 1 | 0.3875 | 4.4286 | 0.5937 | 6.7857 |
C7H12O4N | Mixed culture | 174 | 0.14 | 1 | 0.14 | 1 | 0.2672 | 4.4286 | 0.4094 | 6.7857 |
C9H15O5N | Mixed culture | 217 | 0.10 | 1 | 0.10 | 1 | 0.2039 | 4.4286 | 0.3125 | 6.7857 |
C9H16O5N | Mixed culture | 218 | 0.10 | 1 | 0.10 | 1 | 0.1987 | 4.4286 | 0.3044 | 6.7857 |
C4.9H9.4O2.9N | Mixed culture | 129 | 0.18 | 1 | 0.18 | 1 | 0.3490 | 4.4286 | 0.5349 | 6.7857 |
C4.7H7.7O2.1N | Mixed culture | 112 | 0.21 | 1 | 0.21 | 1 | 0.4015 | 4.4286 | 0.6152 | 6.7857 |
C4.9H9O3N | Mixed culture | 130 | 0.20 | 1 | 0.20 | 1 | 0.3954 | 4.4286 | 0.6058 | 6.7857 |
C5H8.8O3.2N | Mixed culture | 134 | 0.21 | 1 | 0.21 | 1 | 0.3994 | 4.4286 | 0.6121 | 6.7857 |
C4.1H6.8O2.2N | Mixed culture | 105 | 0.25 | 1 | 0.25 | 1 | 0.4905 | 4.4286 | 0.7515 | 6.7857 |
C5.1H8.5O2.5N | Mixed culture | 124 | 0.19 | 1 | 0.19 | 1 | 0.3708 | 4.4286 | 0.5681 | 6.7857 |
C5.3H9.2O2.5N | Mixed culture | 127 | 0.18 | 1 | 0.18 | 1 | 0.3475 | 4.4286 | 0.5325 | 6.7857 |
C5H8O2N | Pure culture | 114 | 0.19 | 1 | 0.19 | 1 | 0.3690 | 4.4286 | 0.5654 | 6.7857 |
C5H8.33O0.81N | Pure culture | 95 | 0.17 | 1 | 0.17 | 1 | 0.3269 | 4.4286 | 0.5008 | 6.7857 |
C4H8O2N | Pure culture | 102 | 0.24 | 1 | 0.24 | 1 | 0.4559 | 4.4286 | 0.6985 | 6.7857 |
C4.17H7.42O1.38N | Pure culture | 94 | 0.22 | 1 | 0.22 | 1 | 0.4226 | 4.4286 | 0.6474 | 6.7857 |
C4.54H7.91O1.95N | Pure culture | 108 | 0.21 | 1 | 0.21 | 1 | 0.4043 | 4.4286 | 0.6194 | 6.7857 |
C4.17H7.21O1.79N | Pure culture | 100 | 0.23 | 1 | 0.23 | 1 | 0.4477 | 4.4286 | 0.6860 | 6.7857 |
C4.16H8O1.25N | Pure culture | 92 | 0.21 | 1 | 0.21 | 1 | 0.4049 | 4.4286 | 0.6204 | 6.7857 |
C3.85H6.69O1.78N | Pure culture | 95 | 0.26 | 1 | 0.26 | 1 | 0.4990 | 4.4286 | 0.7646 | 6.7857 |
Maximum | 218 | 0.25 | 1 | 0.25 | 1 | 0.4990 | 4.4286 | 0.7646 | 6.7857 | |
Minimum | 92 | 0.10 | 1 | 0.10 | 1 | 0.1987 | 4.4286 | 0.3045 | 6.7857 | |
Average | 125 | 0.19 | 1 | 0.19 | 1 | 0.3759 | 4.4286 | 0.5759 | 6.7857 |
Scenario-1 | Scenario-2 | Scenario-3 | |||||||
---|---|---|---|---|---|---|---|---|---|
100 m | 40,000 m | 80,000 m | 100 m | 40,000 m | 80,000 m | 100 m | 40,000 m | 80,000 m | |
ADE | 1.61% | 1.74% | 2.21% | 0.86% | 1.29% | 1.75% | 0.38% | 0.61% | 0.90% |
ADF | 6.87% | 7.41% | 9.43% | 3.74% | 5.59% | 7.58% | 2.29% | 3.67% | 5.38% |
GW | 8.38% | 9.05% | 11.51% | 4.80% | 7.16% | 9.72% | 2.84% | 4.57% | 6.68% |
OD | 0.09% | 0.09% | 0.12% | 0.05% | 0.07% | 0.10% | 0.02% | 0.03% | 0.05% |
HT | 1.76% | 1.90% | 2.41% | 0.95% | 1.41% | 1.92% | 0.54% | 0.87% | 1.27% |
FAET | 13.74% | 14.83% | 18.86% | 7.29% | 10.88% | 14.76% | 4.26% | 6.84% | 10.01% |
PO | 2.34% | 2.30% | 3.21% | 1.20% | 1.91% | 0.59% | 0.78% | 1.26% | 1.84% |
A | 7.85% | 8.47% | 10.78% | 4.17% | 6.23% | 8.45% | 2.57% | 4.13% | 6.04% |
BDO | 57.37% | 54.01% | 41.49% | 76.85% | 65.48% | 53.17% | 86.31% | 78.02% | 67.86% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, S.; Wang, X.; Zhao, X.; Ren, N. Characterizing Water Pollution Potential in Life Cycle Impact Assessment Based on Bacterial Growth and Water Quality Models. Water 2018, 10, 1621. https://doi.org/10.3390/w10111621
Bai S, Wang X, Zhao X, Ren N. Characterizing Water Pollution Potential in Life Cycle Impact Assessment Based on Bacterial Growth and Water Quality Models. Water. 2018; 10(11):1621. https://doi.org/10.3390/w10111621
Chicago/Turabian StyleBai, Shunwen, Xiuheng Wang, Xinyue Zhao, and Nanqi Ren. 2018. "Characterizing Water Pollution Potential in Life Cycle Impact Assessment Based on Bacterial Growth and Water Quality Models" Water 10, no. 11: 1621. https://doi.org/10.3390/w10111621
APA StyleBai, S., Wang, X., Zhao, X., & Ren, N. (2018). Characterizing Water Pollution Potential in Life Cycle Impact Assessment Based on Bacterial Growth and Water Quality Models. Water, 10(11), 1621. https://doi.org/10.3390/w10111621