Fingerprinting Suspended Sediment Sources in an Urbanized Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Collection of Representative Source and Suspended Sediment Samples
2.3. Sample Preparation and Analytical Procedures
2.4. Statistical Discrimination and Sediment Source Ascription
2.5. Goodness-of-Fit and Uncertainty Analysis
2.6. SWAT Modeling
2.7. Land Use Change Scenario
3. Results
3.1. Optimum Fingerprinting Properties
3.2. Sediment Source Ascription
3.3. Comparison between Suspended and Stream Bed Sediment Sources
3.4. Goodness-of-Fit and Uncertainty Analysis
3.5. SWAT Model Calibration and Validation
3.6. Prioritizing Subwatersheds for BMPs
3.7. Land Use Change Scenario
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davis, C.M.; Fox, J.F. Sediment Fingerprinting: Review of the Method and Future Improvements for Allocating Nonpoint Source Pollution. J. Environ. Eng. 2009, 135, 490–504. [Google Scholar] [CrossRef]
- Harbor, J. Engineering geomorphology at the cutting edge of land disturbance: Erosion and sediment control on construction sites. Geomorphology 1999, 31, 247–263. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef] [PubMed]
- Czuba, J.A.; Magirl, C.S.; Czuba, C.R.; Grossman, E.E.; Curran, C.A.; Gendaszek, A.S.; Dinicola, R.S. Sediment load from major rivers into Puget Sound and its adjacent waters: U.S. Geological Survey Fact Sheet 2011–3083. USGS: Reston, VA, USA, 2011. [Google Scholar]
- Kemp, P.; Sear, D.; Collins, A.; Naden, P.; Jones, I. The impacts of fine sediment on riverine fish. Hydrol. Process. 2011, 25, 1800–1821. [Google Scholar] [CrossRef]
- Vercruysse, K.; Grabowski, R.C.; Rickson, R.J. Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth-Sci. Rev. 2017, 166, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Koiter, A.J.; Lobb, D.A.; Owens, P.N.; Petticrew, E.L.; Tiessen, K.H.D.; Li, S. Investigating the role of connectivity and scale in assessing the sources of sediment in an agricultural watershed in the Canadian prairies using sediment source fingerprinting. J. Soils Sediments 2013, 13, 1676–1691. [Google Scholar] [CrossRef]
- US EPA. USEPA National Summary of State Information|Water Quality Assessment and TMDL Information. Available online: https://ofmpub.epa.gov/waters10/attains_nation_cy.control#STREAM/CREEK/RIVER (accessed on 18 September 2018).
- McCarney-Castle, K.; Childress, T.M.; Heaton, C.R. Sediment source identification and load prediction in a mixed-use Piedmont watershed, South Carolina. J. Environ. Manag. 2017, 185, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Mukundan, R.; Radcliffe, D.E.; Ritchie, J.C.; Risse, L.M.; McKinley, R.A. Sediment Fingerprinting to Determine the Source of Suspended Sediment in a Southern Piedmont Stream. J. Environ. Qual. 2010, 39, 1328–1337. [Google Scholar] [CrossRef] [PubMed]
- The World Bank World Bank Open Data: Urban Population (% of Total) and Urban Population Growth (Annual %). Available online: https://data.worldbank.org/indicator/SP.POP.GROW and https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS (accessed on 31 October 2018).
- Russell, K.L.; Vietz, G.J.; Fletcher, T.D. Global sediment yields from urban and urbanizing watersheds. Earth-Sci. Rev. 2017, 168, 73–80. [Google Scholar] [CrossRef]
- Walsh, C.J.; Fletcher, T.D.; Ladson, A.R. Stream restoration in urban catchments through redesigning stormwater systems: Looking to the catchment to save the stream. J. N. Am. Benthol. Soc. 2005, 24, 690–705. [Google Scholar] [CrossRef]
- Rossi, L.; Chèvre, N.; Fankhauser, R.; Margot, J.; Curdy, R.; Babut, M.; Barry, D.A. Sediment contamination assessment in urban areas based on total suspended solids. Water Res. 2013, 47, 339–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Zech, W.C.; Logan, C.P. Stormwater Field Evaluation and Its Challenges of a Sediment Basin with Skimmer and Baffles at a Highway Construction Site. Water 2015, 7, 3407–3430. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.J.; Lockaby, B.G. The Effectiveness of Forestry Best Management Practices for Sediment Control in the Southeastern United States: A Literature Review. South. J. Appl. For. 2011, 35, 170–177. [Google Scholar] [CrossRef]
- Arabi, M.; Govindaraju, R.S.; Hantush, M.M.; Engel, B.A. Role of Watershed Subdivision on Modeling the Effectiveness of Best Management Practices with Swat1. JAWRA J. Am. Water Resour. Assoc. 2006, 42, 513–528. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Radke, J.K.; Laflen, J.M. Small grain cover crops and wheel traffic effects on infiltration, runoff, and erosion. J. Soil Water Conserv. 2001, 56, 160–164. [Google Scholar]
- Panagos, P.; Borrelli, P.; Meusburger, K.; van der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Walling, D.E. Tracing suspended sediment sources in catchments and river systems. Sci. Total Environ. 2005, 344, 159–184. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.L.; Pulley, S.; Foster, I.D.L.; Gellis, A.; Porto, P.; Horowitz, A.J. Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for end-users. J. Environ. Manag. 2017, 194, 86–108. [Google Scholar] [CrossRef] [PubMed]
- Barthod, L.R.M.; Liu, K.; Lobb, D.A.; Owens, P.N.; Martínez-Carreras, N.; Koiter, A.J.; Petticrew, E.L.; McCullough, G.K.; Liu, C.; Gaspar, L. Selecting Color-based Tracers and Classifying Sediment Sources in the Assessment of Sediment Dynamics Using Sediment Source Fingerprinting. J. Environ. Qual. 2015, 44, 1605–1616. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Lobb, D.A.; Miller, J.J.; Owens, P.N.; Caron, M.E.G. Determining sources of fine-grained sediment for a reach of the Lower Little Bow River, Alberta, using a colour-based sediment fingerprinting approach. Can. J. Soil Sci. 2017, 98, 55–69. [Google Scholar] [CrossRef]
- Nosrati, K.; Govers, G.; Semmens, B.X.; Ward, E.J. A mixing model to incorporate uncertainty in sediment fingerprinting. Geoderma 2014, 217–218, 173–180. [Google Scholar] [CrossRef]
- Collins, A.L.; Walling, D.E. Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins. J. Hydrol. 2002, 261, 218–244. [Google Scholar] [CrossRef]
- Smith, H.G.; Blake, W.H. Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections. Geomorphology 2014, 204, 177–191. [Google Scholar] [CrossRef]
- Koiter, A.J.; Owens, P.N.; Petticrew, E.L.; Lobb, D.A. The role of gravel channel beds on the particle size and organic matter selectivity of transported fine-grained sediment: Implications for sediment fingerprinting and biogeochemical flux research. J. Soils Sediments 2015, 15, 2174–2188. [Google Scholar] [CrossRef]
- Huisman, N.L.H.; Karthikeyan, K.G.; Lamba, J.; Thompson, A.M.; Peaslee, G. Quantification of seasonal sediment and phosphorus transport dynamics in an agricultural watershed using radiometric fingerprinting techniques. J. Soils Sediments 2013, 13, 1724–1734. [Google Scholar] [CrossRef]
- Wilson, C.G.; Kuhnle, R.A.; Bosch, D.D.; Steiner, J.L.; Starks, P.J.; Tomer, M.D.; Wilson, G.V. Quantifying relative contributions from sediment sources in Conservation Effects Assessment Project watersheds. J. Soil Water Conserv. 2008, 63, 523–532. [Google Scholar] [CrossRef]
- Miller, J.R.; Lord, M.; Yurkovich, S.; Mackin, G.; Kolenbrander, L. Historical trends in sedimentation rates and sediment provenance, fairfield lake, western north carolina1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 1053–1075. [Google Scholar] [CrossRef]
- Mzuza, M.K.; Weiguo, Z.; Chapola, L.S.; Tembo, M.; Kapute, F. Determining sources of sediments at Nkula Dam in the Middle Shire River, Malawi, using mineral magnetic approach. J. Afr. Earth Sci. 2017, 126, 23–32. [Google Scholar] [CrossRef]
- Walling, D.E.; Owens, P.N.; Leeks, G.J.L. Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK. Hydrol. Process. 1999, 13, 955–975. [Google Scholar] [CrossRef]
- Martínez-Carreras, N.; Krein, A.; Gallart, F.; Iffly, J.F.; Pfister, L.; Hoffmann, L.; Owens, P.N. Assessment of different colour parameters for discriminating potential suspended sediment sources and provenance: A multi-scale study in Luxembourg. Geomorphology 2010, 118, 118–129. [Google Scholar] [CrossRef]
- Fox, J.F.; Papanicolaou, A.N. The Use of Carbon and Nitrogen Isotopes to Study Watershed Erosion Processes1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 1047–1064. [Google Scholar] [CrossRef]
- Rhoton, F.E.; Emmerich, W.E.; DiCarlo, D.A.; McChesney, D.S.; Nearing, M.A.; Ritchie, J.C. Identification of Suspended Sediment Sources Using Soil Characteristics in a Semiarid Watershed. Soil Sci. Soc. Am. J. 2008, 72, 1102. [Google Scholar] [CrossRef]
- Fu, B.; Field, J.B.; Newham, L.T. Tracing the source of sediment in Australian coastal catchments. In Regolith 2006-Consolidation and Dispersion of Ideas; CRC LEME: Perth, Australian, 2006. [Google Scholar]
- Pulley, S.; Foster, I.; Antunes, P. The uncertainties associated with sediment fingerprinting suspended and recently deposited fluvial sediment in the Nene river basin. Geomorphology 2015, 228, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Palazón, L.; Gaspar, L.; Latorre, B.; Blake, W.H.; Navas, A. Identifying sediment sources by applying a fingerprinting mixing model in a Pyrenean drainage catchment. J. Soils Sediments 2015, 15, 2067–2085. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, S.N.; Hancock, G.J.; Bartley, R.; Hawdon, A.A.; Keen, R.J. Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River basin, Australia. Agric. Ecosyst. Environ. 2013, 180, 90–102. [Google Scholar] [CrossRef]
- Pulley, S.; Foster, I.; Collins, A.L. The impact of catchment source group classification on the accuracy of sediment fingerprinting outputs. J. Environ. Manag. 2017, 194, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, A.L.; Walling, D.E.; Webb, L.; King, P. Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information. Geoderma 2010, 155, 249–261. [Google Scholar] [CrossRef]
- Foucher, A.; Laceby, P.J.; Salvador-Blanes, S.; Evrard, O.; Le Gall, M.; Lefèvre, I.; Cerdan, O.; Rajkumar, V.; Desmet, M. Quantifying the dominant sources of sediment in a drained lowland agricultural catchment: The application of a thorium-based particle size correction in sediment fingerprinting. Geomorphology 2015, 250, 271–281. [Google Scholar] [CrossRef]
- Devereux, O.H.; Prestegaard, K.L.; Needelman, B.A.; Gellis, A.C. Suspended-sediment sources in an urban watershed, Northeast Branch Anacostia River, Maryland. Hydrol. Process. 2010, 24, 1391–1403. [Google Scholar] [CrossRef]
- Franz, C.; Makeschin, F.; Weiß, H.; Lorz, C. Sediments in urban river basins: Identification of sediment sources within the Lago Paranoá catchment, Brasilia DF, Brazil—Using the fingerprint approach. Sci. Total Environ. 2014, 466–467, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Laceby, J.P.; Evrard, O.; Smith, H.G.; Blake, W.H.; Olley, J.M.; Minella, J.P.G.; Owens, P.N. The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: A review. Earth-Sci. Rev. 2017, 169, 85–103. [Google Scholar] [CrossRef]
- Owens, P.N.; Koiter, A.; Petticrew, E.L.; Lobb, D.A. The preferential transport of sediment and its implications for sediment fingerprinting: A flume simulation. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015; Volume 17. [Google Scholar]
- Deasy, C.; Brazier, R.E.; Heathwaite, A.L.; Hodgkinson, R. Pathways of runoff and sediment transfer in small agricultural catchments. Hydrol. Process. Int. J. 2009, 23, 1349–1358. [Google Scholar] [CrossRef]
- Chanasyk, D.S.; Mapfumo, E.; Willms, W. Quantification and simulation of surface runoff from fescue grassland watersheds. Agric. Water Manag. 2003, 59, 137–153. [Google Scholar] [CrossRef]
- Easton, Z.M.; Fuka, D.R.; Walter, M.T.; Cowan, D.M.; Schneiderman, E.M.; Steenhuis, T.S. Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas. J. Hydrol. 2008, 348, 279–291. [Google Scholar] [CrossRef]
- Rostamian, R.; Jaleh, A.; Afyuni, M.; Mousavi, S.F.; Heidarpour, M.; Jalalian, A.; Abbaspour, K.C. Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrol. Sci. J. 2008, 53, 977–988. [Google Scholar] [CrossRef] [Green Version]
- Palazón, L.; Latorre, B.; Gaspar, L.; Blake, W.H.; Smith, H.G.; Navas, A. Combining catchment modelling and sediment fingerprinting to assess sediment dynamics in a Spanish Pyrenean river system. Sci. Total Environ. 2016, 569, 1136–1148. [Google Scholar] [CrossRef] [PubMed]
- Palazón, L.; Gaspar, L.; Latorre, B.; Blake, W.H.; Navas, A. Evaluating the importance of surface soil contributions to reservoir sediment in alpine environments: A combined modelling and fingerprinting approach in the Posets-Maladeta Natural Park. Solid Earth 2014, 5, 963–978. [Google Scholar] [CrossRef]
- ADEM Alabama 303 (d) list 2016. 2016. Available online: http://adem.alabama.gov/programs/water/wquality/2016AL303dList.pdf (accessed on 30 August 2016).
- City of Auburn The comprehensive plan for the city of auburn 2011. 2011. Available online: https://www.auburnalabama.org/CompPlan2030/4.0%20Natural%20Systems%20-Final.pdf (accessed on 31 October 2018).
- Phillips, J.M.; Russell, M.A.; Walling, D.E. Time-integrated sampling of fluvial suspended sediment: A simple methodology for small catchments. Hydrol. Process. 2000, 14, 2589–2602. [Google Scholar] [CrossRef]
- Walling, D.E.; Collins, A.L.; Stroud, R.W. Tracing suspended sediment and particulate phosphorus sources in catchments. J. Hydrol. 2008, 350, 274–289. [Google Scholar] [CrossRef]
- Lamba, J.; Karthikeyan, K.G.; Thompson, A.M. Apportionment of suspended sediment sources in an agricultural watershed using sediment fingerprinting. Geoderma 2015, 239–240, 25–33. [Google Scholar] [CrossRef]
- USEPA. Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices; OHW, Method 3052; USEPA: Washington, DC, USA, 1996.
- Gellis, A.C.; Noe, G.B. Sediment source analysis in the Linganore Creek watershed, Maryland, USA, using the sediment fingerprinting approach: 2008 to 2010. J. Soils Sediments 2013, 13, 1735–1753. [Google Scholar] [CrossRef]
- Kraushaar, S.; Schumann, T.; Ollesch, G.; Schubert, M.; Vogel, H.-J.; Siebert, C. Sediment fingerprinting in northern Jordan: Element-specific correction factors in a carbonatic setting. J. Soils Sediments 2015, 15, 2155–2173. [Google Scholar] [CrossRef]
- Collins, A.L.; Walling, D.E.; Leeks, G.J.L. Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena 1997, 29, 1–27. [Google Scholar] [CrossRef]
- Yu, M.; Rhoads, B.L. Floodplains as a source of fine sediment in grazed landscapes: Tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape. Geomorphology 2018. [Google Scholar] [CrossRef]
- Carter, J.; Owens, P.N.; Walling, D.E.; Leeks, G.J.L. Fingerprinting suspended sediment sources in a large urban river system. Sci. Total Environ. 2003, 314–316, 513–534. [Google Scholar] [CrossRef]
- Nachar, N. The Mann-Whitney U: A Test for Assessing Whether Two Independent Samples Come from the Same Distribution. Tutor. Quant. Methods Psychol. 2008, 4, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.L.; Zhang, Y.; McChesney, D.; Walling, D.E.; Haley, S.M.; Smith, P. Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modelling. Sci. Total Environ. 2012, 414, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Storm, D.E.; Zhang, X.J.; Cao, W.; Duan, X. A new method for fingerprinting sediment source contributions using distances from discriminant function analysis. Catena 2016, 147, 32–39. [Google Scholar] [CrossRef]
- Douglas-Mankin, K.R.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil & Water Assessment Tool—Theoretical Documentation Version 2009; Technical Report; Texas A&M University: Temple, TX, USA, 2009; Available online: http://swat.tamu.edu/documentation/ (accessed on 31 October 2018).
- Mishra, S.K.; Singh, V.P. SCS-CN Method. In Soil Conservation Service Curve Number (SCS-CN) Methodology; Water Science and Technology Library; Springer: Dordrecht, The Netherlands, 2003; pp. 84–146. ISBN 978-90-481-6225-3. [Google Scholar]
- Hargreaves, G.H.; Zohrab, A. Samani Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Lim, K.J.; Engel, B.A.; Tang, Z.; Choi, J.; Kim, K.-S.; Muthukrishnan, S.; Tripathy, D. Automated Web GIS Based Hydrograph Analysis Tool, WHAT 1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 1407–1416. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Bini, C.; Sartori, G.; Wahsha, M.; Fontana, S. Background levels of trace elements and soil geochemistry at regional level in NE Italy. J. Geochem. Explor. 2011, 109, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Cepel, M.; Nikel, G. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- Iyaka, Y.A. Nickel in soils: A review of its distribution and impacts. Sci. Res. Essays 2011, 6, 6774–6777. [Google Scholar]
- Hooda, P. Trace Elements in Soils; John Wiley & Sons: Chippenham, Wiltshire, UK, 2010; ISBN 978-1-4443-1948-4. [Google Scholar]
- Cheng, H.; Hu, Y. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review. Environ. Pollut. 2010, 158, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Tyler, G. Rare earth elements in soil and plant systems—A review. Plant Soil 2004, 267, 191–206. [Google Scholar] [CrossRef]
- Bledsoe, B.P.; Watson, C.C. Effects of Urbanization on Channel Instability1. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 255–270. [Google Scholar] [CrossRef]
- Bosa, S.; Petti, M.; Pascolo, S.; Bosa, S.; Petti, M.; Pascolo, S. Numerical Modelling of Cohesive Bank Migration. Water 2018, 10, 961. [Google Scholar] [CrossRef]
- Ferrel, K.R.A.; Patsinghasanee, S.; Kimura, I.; Shimizu, Y. Coupled Model of Bank Erosion and Meander Evolution for Cohesive Riverbanks. Available online: https://www.mdpi.com/2076-3263/8/10/359/htm (accessed on 6 October 2018).
- Liu, X.; Zhang, X.; Zhang, M. Major Factors Influencing the Efficacy of Vegetated Buffers on Sediment Trapping: A Review and Analysis. J. Environ. Qual. 2008, 37, 1667. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.M.; Thorne, C.R. Riverbank stability analysis. I: Theory. J. Hydraul. Eng. 1988, 114, 134–150. [Google Scholar] [CrossRef]
- Pitt, R.; Clark, S.E.; Lake, D.W. Construction Site Erosion and Sediment Controls: Planning, Design and Performance; DEStech Publications, Inc.: Lancaster, PA, USA, 2007; ISBN 978-1-932078-38-1. [Google Scholar]
- Malhotra, K.; Lamba, J.; Shepherd, S. Sediment fingerprinting to identify sources of stream bed sediment in an urbanized watershed. In 2018 ASABE Annual International Meeting; ASABE Paper No. 1801826; ASABE: Detroit, MI, USA, 2018; p. 1. [Google Scholar]
- Schmalz, B.; Zhang, Q.; Kuemmerlen, M.; Cai, Q.; Jähnig, S.C.; Fohrer, N. Modelling spatial distribution of surface runoff and sediment yield in a Chinese river basin without continuous sediment monitoring. Hydrol. Sci. J. 2015, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Gholami, L.; Sadeghi, S.H.; Homaee, M. Straw Mulching Effect on Splash Erosion, Runoff, and Sediment Yield from Eroded Plots. Soil Sci. Soc. Am. J. 2013, 77, 268–278. [Google Scholar] [CrossRef]
Sites | Suspended Sediment Sample Collection Dates (Year 2017) |
---|---|
1 | 2 December, 5 February, 10 March, 14 April, 18 May, 28 June, 28 July, 22 September |
2 * | 2 December, 14 April, 18 May |
3 | 2 December, 5 February, 10 March, 14 April, 18 May, 28 June, 28 July, 22 September |
Sampling Location | Grain Size (µm) | 63–212 µm | <63 µm |
---|---|---|---|
Sources | |||
Construction sites | D10 | 9.5 | 3.8 |
D50 | 96.5 | 23.6 | |
D90 | 214.4 | 61.6 | |
Stream banks | D10 | 13.5 | 5.1 |
D50 | 98.5 | 25.9 | |
D90 | 211.25 | 70.2 | |
Suspended Sediment | |||
Site 1 | D10 | 6.0 | 4.86 |
D50 | 49.1 | 23.2 | |
D90 | 163.6 | 64.1 | |
Site 2 | D10 | 6.48 | 5.08 |
D50 | 42.2 | 22.6 | |
D90 | 150.5 | 61.9 | |
Site 3 | D10 | 9.46 | 5.8 |
D50 | 57.4 | 26.8 | |
D90 | 169.3 | 67.7 |
SWAT Calibration Parameter | Default Value | Final Calibrated Value |
---|---|---|
Soil _AWC (mm/mm) | Varies | 15% increase |
GWREVAP (dimensionless) | 0.02 | 0.2 |
CN2 (dimensionless) | Varies | 10% decrease |
GWQMN (mm) | 1000 | 3907 |
Mass-Conservative Test | |||||||||||||||
Sites | Fingerprinting Properties | ||||||||||||||
1 | B | Na | K | Ti | V | Cr | Ga | Rb | Y | Zr | Nb | Sr | Cs | Ba | Sm |
Dy | Lu | Hf | Ta | W | Ir | Pt | Tl | Pb | Bi | U | |||||
2 | Li | Be | B | Na | Mg | Al | P | K | Ca | Sc | Ti | V | Fe | Co | Cu |
Zn | Ga | Rb | Y | Zr | Nb | Ag | Cs | Ba | Sm | Eu | Gd | Dy | Ho | Yb | |
Lu | Hf | Ta | Tl | Pb | Bi | Th | U | ||||||||
3 | Li | Be | B | Na | K | Al | Sc | Ti | V | Fe | Co | Ni | Ga | Se | Rb |
Zr | Nb | Ag | Cs | Ba | Eu | Lu | Hf | Ta | W | Ir | Pt | Hg | Tl | Pb | |
Bi | U | ||||||||||||||
Mann Whitney Test | |||||||||||||||
Sites | Fingerprinting Properties | ||||||||||||||
1 | V | Cr | Ga | Zr | Nb | Ta | W | Pb | Bi | ||||||
2 | Be | B | Al | Sc | V | Fe | Ga | Zr | Nb | Ag | Hf | Ta | Pb | Bi | Th |
3 | Li | Be | B | Al | Sc | V | Fe | Ga | Ni | Se | Zr | Nb | Hf | Ag | Ta |
W | Pb | Bi | U |
Mass-Conservation Test | |||||||||||||||
Sites | Fingerprinting Properties | ||||||||||||||
1 | Li | Be | B | Na | P | K | Sc | Ti | V | Cr | Fe | Co | Ni | Ga | As |
Rb | Zr | Nb | Mo | Cd | Cs | Ba | Pr | Eu | Gd | Ta | W | Ir | Pt | Hg | |
Tl | Pb | Bi | U | ||||||||||||
2 | Li | Be | Mg | Al | K | Sc | V | Cr | Fe | Co | Ni | Zn | Ga | As | Zr |
Nb | Cd | Cs | Ba | Nd | Lu | Hf | Ta | W | Ir | Pt | Tl | Pb | Bi | U | |
3 | Li | Be | B | Na | Al | K | Sc | V | Cr | Fe | Co | Ni | Ga | As | Rb |
Zr | Nb | Cd | Sb | Cs | Ba | Pr | Eu | Hf | Ta | W | Ir | Pt | Hg | Tl | |
Pb | Bi | U | |||||||||||||
Mann Whitney Test | |||||||||||||||
Sites | Fingerprinting Properties | ||||||||||||||
1 | Be | Sc | V | Co | Ga | As | Rb | Nb | Cd | Ba | Pr | Eu | Gd | Ta | Ir |
Pt | Pb | Bi | |||||||||||||
2 | Be | V | Cr | Fe | Ni | Ga | Zr | Cd | Hf | Ir | Pt | Bi | U | ||
3 | Be | B | V | Cr | Fe | Co | Ni | Ga | Rb | Zr | Cd | Ba | Pr | Eu | Hf |
Ta | Ir | Pt | Pb | Bi | U |
Site | Fingerprinting Property | Wilks’ Lambda | Percentage of Source Samples Classified Correctly | Cumulative Percentage of Source Samples Classified Correctly | Tracer Discriminatory Weighting |
---|---|---|---|---|---|
1 | Bi Ga Pb Ta | 0.151 0.101 0.074 0.040 | 100 84.6 84.6 84.6 | 100 100 100 100 | 1.18 1.00 1.00 1.00 |
2 | V Pb Bi | 0.055 0.037 0.022 | 100 100 90 | 100 100 100 | 1.10 1.10 1.00 |
3 | V Ag Pb Se Nb | 0.286 0.259 0.229 0.181 0.153 | 96.7 86.67 80.00 70.00 80.00 | 96.7 93.3 93.3 96.7 96.7 | 1.38 1.24 1.14 1.00 1.14 |
Site | Fingerprinting Property | Wilks’ Lambda | Percentage of Source Samples Classified Correctly | Cumulative Percentage of Source Samples Classified Correctly | Tracer Discriminatory Weighting |
---|---|---|---|---|---|
1 | Bi Ir Ba | 0.049 0.032 0.025 | 100 84.6 76.9 | 100 100 100 | 1.3 1.1 1.0 |
2 | Ga Ni Bi | 0.198 0.152 0.107 | 100 80 80 | 100 100 100 | 1.25 1 1 |
3 | Rb U Zr Pr Eu Ni | 0.152 0.122 0.091 0.070 0.064 0.038 | 76.67 73.33 86.67 80 76.67 80 | 76.67 86.7 100 100 100 100 | 1.04 1.00 1.18 1.09 1.04 1.09 |
Relative Mean Error (%) | Relative Mean Error (%) | Relative Mean Error (%) | ||||||
---|---|---|---|---|---|---|---|---|
Site 1 | Site 2 | Site 3 | ||||||
Month | 63–212 μm | <63 μm | Month | 63–212 μm | <63 μm | Month | 63–212 μm | <63 μm |
20 October–2 December | 20 | 6 | 20 October–2 December | 21 | 17 | 20 October–2 December | 24 | 25 |
2 December–5 February | 9 | 10 | 2 December–February | - * | - * | 2 December–February | 22 | 29 |
5 February–10 March | 4 | 14 | 5 February–10 March | - * | - * | 5 February–10 March | 25 | 25 |
10 March–14 April | 22 | 12 | 10 March–14 April | 11 | 14 | 10 March–14 April | 31 | 15 |
14 April–18 May | 18 | 11 | 14 April–18 May | 15 | 8 | 14 April–18 May | 30 | 14 |
18 May–28 June | 17 | 9 | 18 May–28 June | - * | - * | 18 May–28 June | 10 | 8 |
28 June–28 July | 10 | 29 | 28 June–28 July | - * | - * | 28 June–28 July | 27 | 13 |
28 July–22 September | 12 | 22 | 28 July–22 September | - * | - * | 28 July–22 September | 18 | 25 |
Calibration (January 2011–December 2014) | Validation (January 2015–December 2017) | |||||
---|---|---|---|---|---|---|
Variable | R2 *** | NSE * | PBIAS ** | R2 | NSE | PBIAS |
Surface Runoff (m3/s) | 0.84 | 0.77 | 18.5 | 0.83 | 0.82 | −6.5 |
Baseflow (m3/s) | 0.85 | 0.75 | 18.8 | 0.90 | 0.88 | −9.3 |
Total Stream Flow (m3/s) | 0.86 | 0.77 | 18.6 | 0.84 | 0.83 | −7.5 |
Subwatershed | Before Land Use Change | After Land Use Change | ||||
---|---|---|---|---|---|---|
Forested % | Urban % | Surface Runoff (mm ha−1 year−1) | Forested % | Urban % | Surface Runoff (mm ha−1 year−1) | |
1 | 50.6 | 18.3 | 12.8 | 0 | 68.9 | 29.8 |
2 | 62.2 | 7.3 | 2.3 | 0 | 69.5 | 7.5 |
3 | 84.3 | 8.6 | 10.0 | 0 | 92.9 | 39.6 |
4 | 91.4 | 7.2 | 14.1 | 0 | 98.7 | 57.0 |
5 | 74.7 | 15.3 | 4.6 | 0 | 90 | 14.5 |
6 | 70.2 | 13.7 | 9.6 | 0 | 83.9 | 16.5 |
7 | 67.6 | 11 | 6.4 | 0 | 78.6 | 23.0 |
8 | 75.1 | 23.5 | 9.3 | 0 | 98.6 | 34.1 |
9 | 76.2 | 15.9 | 11.0 | 0 | 92.1 | 45.7 |
10 | 96 | 0.7 | 10.7 | 0 | 96.6 | 55.6 |
11 | 68.3 | 11.2 | 16.3 | 0 | 79.5 | 46.5 |
12 | 87.2 | 5.2 | 12.2 | 0 | 92.4 | 46.9 |
13 | 89.4 | 3.9 | 4.6 | 0 | 93.2 | 19.9 |
14 | 82.9 | 11.8 | 3.3 | 0 | 94.8 | 11.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malhotra, K.; Lamba, J.; Srivastava, P.; Shepherd, S. Fingerprinting Suspended Sediment Sources in an Urbanized Watershed. Water 2018, 10, 1573. https://doi.org/10.3390/w10111573
Malhotra K, Lamba J, Srivastava P, Shepherd S. Fingerprinting Suspended Sediment Sources in an Urbanized Watershed. Water. 2018; 10(11):1573. https://doi.org/10.3390/w10111573
Chicago/Turabian StyleMalhotra, Kritika, Jasmeet Lamba, Puneet Srivastava, and Stephanie Shepherd. 2018. "Fingerprinting Suspended Sediment Sources in an Urbanized Watershed" Water 10, no. 11: 1573. https://doi.org/10.3390/w10111573
APA StyleMalhotra, K., Lamba, J., Srivastava, P., & Shepherd, S. (2018). Fingerprinting Suspended Sediment Sources in an Urbanized Watershed. Water, 10(11), 1573. https://doi.org/10.3390/w10111573