Delineation of Saline-Water Intrusion Using Surface Geoelectrical Method in Jahanian Area, Pakistan
Abstract
:1. Introduction
2. Study Area and Hydrogeological Setting
3. Materials and Methods
3.1. Electrical Resistivity Method
3.2. Dar-Zarrouk Parameters
3.3. Estimation of Aquifer Parameters
3.4. Hydrochemical Method
4. Results
4.1. Resistivity Model Curves and Lithological Calibration
4.2. Geoelectrical Columns and Aquifer Resistivity
4.3. Transverse Resistance and Longitudinal Conductance
4.4. Hydraulic Conductivity and Transmissivity
4.5. Geological Cross-Sections
4.6. Physicochemical Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zawawi, M.H.; Syafalni; Abustan, I. Detection of Groundwater Aquifer Using Resistivity Imaging Profiling at Beriah Landfill Site, Perak, Malaysia. Adv. Mater. Res. 2011, 250, 1852–1855. [Google Scholar] [CrossRef]
- Yaouti, F.E.; Mandour, A.E.; Khattach, D.; Benavente, J.; Kaufmann, O. Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): A geostatistical, geochemical, and tomographic study. Appl. Geochem. 2009, 24, 16–31. [Google Scholar] [CrossRef]
- Duque, C.; Calvache, M.L.; Pedrera, A.; Martín-Rosales, W.; López-Chicano, M. Combined time domain electromagnetic soundings and gravimetry to determine marine intrusion in a detrital coastal aquifer Southern Spain. J. Hydrol. 2008, 349, 536–547. [Google Scholar] [CrossRef]
- Balasubramanian, M.; Srinivasamoorthy, K.; Gopinath, S.; Saravanan, K.; Prakash, R.; Ravindran, A.; Sarma, V.S. Efficacy of diverse electrode configurations in 2D electrical resistivity imaging for effective delineation of saline water intrusion: Pondicherry coastal aquifers, India: A case study. J. Coast. Sci. 2018, 5, 1–15. [Google Scholar]
- Baba, A.; Gündüz, O. Effect of Geogenic Factors on Water Quality and Its Relation to Human Health around Mount Ida, Turkey. Water 2017, 9, 66. [Google Scholar] [CrossRef]
- Cooper, H.H. A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer. J. Geophys. Res. 1959, 64, 461–467. [Google Scholar] [CrossRef]
- Lee, C.H.; Cheng, R.T. On seawater encroachment in coastal aquifers. Water Resour. Res. 1974, 10, 1039–1043. [Google Scholar] [CrossRef]
- Wicks, C.M.; Herman, J.S. The Effect of Zones of High Porosity and Permeability on the Configuration of the Saline–Freshwater Mixing Zone. Ground Water. 1995, 33, 733–740. [Google Scholar] [CrossRef]
- Barlow, P.M.; Reichard, E.G. Saltwater intrusion in coastal regions of North America. Hydrogeol. J. 2010, 18, 247–260. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Akhter, G.; Khan, M. Geophysical Investigation of Fresh-Saline Water Interface: A Case Study from South Punjab, Pakistan. Groundwater 2017, 55, 841–856. [Google Scholar] [CrossRef] [PubMed]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology, 3rd ed.; Wiley: Hoboken, NY, USA, 2005. [Google Scholar]
- Hu, Z.; Morton, L.W.U.S. Midwestern Residents Perceptions of Water Quality. Water 2011, 3, 217–234. [Google Scholar] [CrossRef]
- Haq, A.U. Drought Mitigation interventions by improved water management: A case study from Punjab –Pakistan. In Proceedings of the 18th International Congress on Irrigation and Drainage, Montreal, Canada, 21–28 July 2002. [Google Scholar]
- Latif, M.; Naghmi, E.H. Development of private tube wells for draught mitigation and their impact on aquifers. In Proceedings of the 3rd National Seminar on Drainage, Peshawar, Pakistan, 7–8 June 2004; Volume I, pp. 46–54. [Google Scholar]
- Post, V.E.A. Fresh and saline groundwater interaction in coastal aquifers: Is our technology ready for the problems ahead. Hydrol. J. 2005, 13, 120–123. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Akhter, G.; Jin, W. Geophysical Assessment of Groundwater Potential: A Case Study from MianChannu Area, Pakistan. Groundwater 2017, 56, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, K.; Ko, I.; Lee, S.; Hwang, H. Geochemical and geophysical monitoring of saline water intrusion in Korean paddy fields. Environ. Geochem. Health 2002, 24, 277–291. [Google Scholar] [CrossRef]
- Bataynch, A.T. Use of electrical resistivity methods for detecting subsurface fresh and saline water and delineating their interfacial configuration: A case study of the eastern Dead Sea coastal aquifers, Jordan. Hydrogeol. J. 2006, 14, 1277–1283. [Google Scholar] [CrossRef]
- Wilson, S.R.; Ingham, M.; McConchie, J.A. The applicability of earth resistivity methods for saline interface definition. J. Hydrol. 2006, 316, 301–312. [Google Scholar] [CrossRef]
- Morrow, F.J.; Ingham, M.R.; McConchie, J.A. Monitoring of tidal influences on the saline interface using resistivity traversing and cross-borehole resistivity tomography. J. Hydrol. 2010, 389, 69–77. [Google Scholar] [CrossRef]
- Mario, Z.; Joan, B.; Rogelio, L.; Xavier, M.P. Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in a coastal plain region (Alt Emporda, Northern Spain). J. Hydrol. 2011, 409, 407–422. [Google Scholar]
- Akhter, G.; Hasan, M. Determination of aquifer parameters using geoelectrical sounding and pumping test data in Khanewal District, Pakistan. Open Geosci. 2016, 8, 630–638. [Google Scholar] [CrossRef]
- Gao, Q.; Shang, Y.; Hasan, M.; Jin, W.; Yang, P. Evaluation of a Weathered Rock Aquifer Using ERT Method in South Guangdong, China. Water 2018, 10, 293. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Jin, W. Delineation of weathered/fracture zones for aquifer potential using an integrated geophysical approach: A case study from South China. J. Appl. Geophys. 2018, 157, 47–60. [Google Scholar] [CrossRef]
- Loke, M. Tutorial: 2D and 3D Electrical Imaging Surveys; Universiti Sains Malaysia: Penang, Malaysia, 2016. [Google Scholar]
- Soupios, P.M.; Kouli, M.; Vallianatos, F.; Vafidis, A.; Stavroulakis, G. Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in Chania (Crete–Greece). J. Hydrol. 2007, 338, 122–131. [Google Scholar] [CrossRef]
- Hamdan, H.A.; Vafidis, A. Joint inversion of 2D resistivity and seismic travel time data to image saltwater intrusion over karstic areas. Environ. Earth Sci. 2013, 68, 1877–1885. [Google Scholar] [CrossRef]
- Akaolisa, C. Aquifer transmissivity and basement structure determination using resistivity sounding at Jos Plateau state Nigeria. Environ. Monit. Assess. 2006, 114, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Shang, Y.; Akhter, G.; Jin, W. Evaluation of Groundwater Suitability for Drinking and Irrigation Purposes in Toba Tek Singh District, Pakistan. Irrig. Drain. Syst. Eng. 2017, 6, 185. [Google Scholar] [CrossRef]
- Florescu, D.; Ionete, R.E.; Sandru, C.; Iordache, A.; Culea, M. The influence of pollution monitoring parameters in characterizing the surface water quality from Romania southern area. Roman. J. Phys. 2010, 56, 1001–1010. [Google Scholar]
- Water and Power Development Authority (WAPDA). Hydro Geological Data of Lower Bari Doab; WAPDA: Lahore, Pakistan, 1980; V 01.1. [Google Scholar]
- Water and Power Development Authority (WAPDA). Hydro Geological Data of Lower Bari Doab; WAPDA: Lahore, Pakistan, 1978; V 01. [Google Scholar]
- Water and Power Development Authority (WAPDA). Annual Reports 1988–1989; WAPDA: Lahore, Pakistan, 1989; pp. 21–98. [Google Scholar]
- Store, H.; Storz, W.; Jacobs, F. Electrical resistivity tomography to investigate geological structures of earth’s upper crust. Geophys. Prospect. 2000, 48, 455–471. [Google Scholar] [CrossRef]
- Kouzana, L.; Benassi, R.; Ben Mammou, A.; Felfoul, M.S. Geophysical and hydrochemical study of the seawater intrusion in Mediterranean semi arid zones. Case of the Korba coastal aquifer (Cap-Bon, Tunisia). J. Afr. Earth Sci. 2010, 58, 242–254. [Google Scholar] [CrossRef]
- Sharma, P.V. Environmental and Engineering Geophysics; Cambridge University Press: Cambridge, UK, 1997; p. 475. [Google Scholar]
- Kirsch, R. Groundwater Geophysics, a Tool for Hydrogeology, 2nd ed.; Springer: Berlin, Germany, 2009; p. 493. [Google Scholar]
- Kearey, P.; Brooks, M.; Hill, I. An Introduction to Geophysical Exploration, 3rd ed.; Blackwell Publishing: Hoboken, NJ, USA, 2003; Chapter 8; pp. 185–189. [Google Scholar]
- Telford, W.M.; Geldart, L.P.; Sheriff, R. Applied Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1990; p. 790. [Google Scholar]
- Bobachev, A.; Modin, I.; Shevnin, V. Resistivity Sounding Interpretation, Version 3.1.2c; Moscow State University: Moscow, Russia, 2 December 2011. [Google Scholar]
- Maillet, R. The fundamental equations of electrical prospecting. Geophysics 1947, 12, 529–556. [Google Scholar] [CrossRef]
- Batayneh, A.T. The estimation and significance of Dar-Zarrouk parameters in the exploration of quality affecting the Gulf of Aqaba coastal aquifer systems. J. Coast. Conserv. 2013, 17, 623. [Google Scholar] [CrossRef]
- Singh, K.P. Nonlinear estimation of aquifer parameters from surficial resistivity measurements. Hydrol. Earth Syst. Sci. Discuss. 2005, 2, 917–938. [Google Scholar] [CrossRef]
- Ehirim, C.N.; Nwankwo, C.N. Evaluation of aquifer characteristics and groundwater quality using geoelectric method in Choba, Port Harcourt. Arch. Appl. Sci. Res. 2010, 2, 396–403. [Google Scholar]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology; Wiley Press: Hoboken, NJ, USA, 1990; p. 324. [Google Scholar]
- Fetter, C.W. Applied Hydrogeology, 3rd ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1994; p. 600. [Google Scholar]
- Archie, G.E. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics; Technical Publication 1422, Petroleum Technology; American Institute of Mineral and Metal Engineering: Englewood, CO, USA, 1942; Volume 146, pp. 54–62. [Google Scholar]
- Schön, J.H. Physical Properties of Rocks; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Riedel, M.; Long, P.; Liu, C.S.; Schultheiss, P.; Collett, T. Physical properties of near surface sediments at southern hydrate ridge: Results from ODP leg 204. In Proceedings of the Ocean Drilling Program, Scientific Results; Trehu, A.A., Bohrmann, G., Torres, M.E., Colwell, F.S., Eds.; Texas A & M University: College Station, TX, USA, 2005; Volume 204. [Google Scholar]
- Eden, R.N.; Hazel, C.P. Computer and Graphical Analysis of Variable Discharge Pumping Tests of Wells; Institution of Engineers Australia: Sydney, Australia, 1973; pp. 5–10. [Google Scholar]
- Vinegar, H.J.; Waxman, M.H. Induced polarisation of shaly sands. Geophysics 1984, 49, 1267–1287. [Google Scholar] [CrossRef]
- Worthington, P.F. The uses and abuses of the Archie equations: 1. The formation factor–porosity relationship. J. Appl. Geophys. 1993, 30, 215–228. [Google Scholar] [CrossRef]
- Fetter, C.W. Applied Hydrogeology; Merrill Publishing: Columbus, OH, USA, 1988; p. 592. [Google Scholar]
- Dasargues, A. Modeling base flow from an alluvial aquifer using hydraulic-conductivity data obtained from a derived relation with apparent electrical resistivity. Hydrogeol. J. 1997, 5, 97–108. [Google Scholar] [CrossRef]
- APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 2000. [Google Scholar]
- APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA, 2005. [Google Scholar]
- IpI2Winv.2.1 Users guide. In Computer Software User Guide Catalog; Department of Geophysics, Geological Faculty, Moscow State University: Moscow, Russia, 2001; p. 25.
- Sjödahl, P. Resistivity Investigation and Monitoring for Detection of Internal Erosion and Anomalous Seepage in Embankment Dams; Engineering Geology, Lund University: Lund, Sweden, 2006. [Google Scholar]
- Constantinescu, T.; Constantin, S. Genesis and the Evolution of the Big Sinkholes (Obans) of the Karst Zone of Mangalia (Southern Dobruja, Romania). Theoretical and Applied Karstology; Editura Academiei Romane: Bucharest, Romania, 2001; pp. 13–14. [Google Scholar]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 3rd ed.; Recommendations Incorporating1ST and 2nd Addenda; World Health Organization: Geneva, Switzerland, 2008; Volume 1. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture FAO Irrigation and Drain; Paper No. 29; Food and Agriculture Organization: Rome, Italy, 1985; p. 97. [Google Scholar]
- Hasan, M.; Shang, Y.; Akhter, G.; Jin, W. Evaluation of groundwater potential in Kabirwala area, Pakistan: A case study by using geophysical, geochemical and pump data. Geophys. Prospect. 2018, 66, 1737–1750. [Google Scholar] [CrossRef]
VES NO (Selected) | Aquifer Thickness H (m) | Aquifer Resistivity ρo (Ωm) | Transverse Resistance Tr (Ωm2) | Longitudinal Conductance Sc (Siemens) | Electrical Conductivity EC (μS/cm) | Water Resistivity ρw = 10,000/EC (Ωm) | Formation Factor Fa = ρo/ρw | 1/Fa = ρw/ρo | α | m | Porosity Φ | Hydraulic Conductivity K (m/day) | Transmissivity T (m2/day) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 24 | 9 | 106 | 2.98 | 5000 | 2 | 4.5 | 0.22 | 1 | 1.18 | 0.255 | 10 | 240 |
6 | 39 | 19 | 774 | 2.06 | 2000 | 5 | 3.8 | 0.26 | 1 | 1.49 | 0.34 | 30 | 1170 |
14 | 42 | 22 | 780 | 2.28 | 1429 | 7 | 3.14 | 0.32 | 1 | 1.46 | 0.333 | 28 | 1176 |
18 | 51 | 39 | 1761 | 1.52 | 286 | 35 | 1.11 | 0.9 | 1 | 1.72 | 0.392 | 55 | 2805 |
28 | 66 | 43 | 2568 | 1.7 | 313 | 32 | 1.34 | 0.74 | 1 | 1.73 | 0.394 | 56 | 3696 |
27 | 54 | 41 | 2000 | 1.51 | 400 | 25 | 1.64 | 0.61 | 1 | 1.74 | 0.397 | 58 | 3132 |
34 | 40 | 21 | 696 | 2.32 | 1667 | 6 | 3.5 | 0.29 | 1 | 1.51 | 0.344 | 32 | 1280 |
38 | 63 | 35 | 2487 | 1.62 | 500 | 20 | 1.75 | 0.57 | 1 | 1.7 | 0.387 | 52 | 3276 |
45 | 82 | 55 | 5254 | 1.31 | 217 | 46 | 1.2 | 0.84 | 1 | 1.93 | 0.433 | 85 | 6970 |
Formation Resistivity (Ωm) | Lithology |
---|---|
Resistivity greater than 30 (above water table) | Dry strata |
Resistivity less than 15 (below water table) | Clay with saline water |
Resistivity between 15–25 (below water table) | Mixture of sand and clay with brackish water |
Resistivity between 25–45 (below water table) | Sand with fresh water |
Resistivity greater than 45 (below water table) | Mixture of Sand and gravel with fresh water |
VES NO (Selected) | Calculated Parameters | Estimated Parameters | Pumped Parameters | % Matching | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T (m2/day) | K (m/day) | T’ = 1.294Tr + 275.9 (m2/day) | K’ = 1.501ρa − 2.279 (m/day) | Well NO | Tw (m2/day) | Kw (m/day) | T’ and Tw | K’ and Kw | T and Tw | K and Kw | |
1 | 240 | 10 | 413 | 11 | 1 | 296 | 9 | 72 | 82 | 81 | 90 |
6 | 1170 | 30 | 1277 | 26 | 2 | 1105 | 31 | 87 | 84 | 94 | 97 |
14 | 1176 | 28 | 1285 | 31 | 3 | 1043 | 27 | 81 | 87 | 89 | 96 |
18 | 2805 | 55 | 2555 | 56 | 4 | 2954 | 52 | 86 | 93 | 95 | 94 |
28 | 3696 | 56 | 3599 | 62 | 5 | 3893 | 55 | 92 | 89 | 95 | 98 |
27 | 3132 | 58 | 2864 | 59 | 6 | 3254 | 56 | 88 | 95 | 96 | 96 |
34 | 1280 | 32 | 1177 | 29 | 7 | 1343 | 34 | 88 | 85 | 85 | 94 |
38 | 3276 | 52 | 3494 | 50 | 8 | 2954 | 59 | 85 | 85 | 90 | 88 |
45 | 6970 | 85 | 7075 | 80 | 9 | 6754 | 87 | 95 | 92 | 97 | 98 |
(a) Correlation between Electrical and Hydraulic Parameters | |||||
---|---|---|---|---|---|
ρa | Tr | Sc | K’ | T’ | |
ρa | 1 | ||||
Tr | 0.92 | 1 | |||
Sc | −0.93 | −0.8 | 1 | ||
K’ | 0.99 | 0.92 | −0.93 | 1 | |
T’ | 0.92 | 1 | −0.8 | 0.92 | 1 |
(b) Specific Ranges of Electrical and Hydraulic Parameters for Delineation of Fresh, Brackish and Saline Aquifers | |||||
Interpreted Zone | Aquifer Resistivity ρa(Ωm) | Transverse Resistance Tr (Ωm2) | Longitudinal Conductance Sc (mho) | Hydraulic Conductivity K’ (m/day) | Transmissivity T’ (m2/day) |
Fresh water | >25 | >1500 | <2 | >35 | >2000 |
Brackish water | 15–25 | 500–1500 | 2–2.5 | 20–35 | 1000–2000 |
Saline water | <15 | <500 | >2.5 | <20 | <1000 |
(a) Drinking Water Quality [60] | |||||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | Units | Minimum | Maximum | Mean | Median | S.D | Permissible Range | Samples Exceeding Permissible Limits | Samples % |
pH | - | 7.2 | 8.5 | 7.9 | 7.8 | 0.29 | 6.5–8.5 | - | - |
EC | (μS/cm) | 321 | 4645 | 1616.6 | 1462 | 971.22 | 1500 | 23 (1,2,3,4,5,6,7,8,9,12,13,16,17,34,36,37,39,40,41,42,43,45,46) | 46 |
TDS | (mg/L) | 193 | 2787 | 970 | 877 | 582.90 | 1000 | 23 (1,2,3,4,5,6,7,8,9,12,13,16,17,34,36,37,39,40,41,42,43,45,46) | 46 |
Na+ | (mg/L) | 14 | 923 | 226.4 | 183 | 207.89 | 200 | 17 (1,2,3,5,6,9,12,13,34,36,37,3839,41,42,43,46) | 34 |
K+ | (mg/L) | 2 | 178 | 17.9 | 7 | 33.76 | 55 | 4 (3,38,39,42) | 8 |
Ca2+ | (mg/L) | 7 | 82 | 38.6 | 36.5 | 16.42 | 100 | - | - |
Mg2+ | (mg/L) | 8 | 73 | 29.3 | 26 | 15.69 | 50 | 13 (1,2,3,5,6,9,34,36,38,39,42,43,45) | 26 |
Cl− | (mg/L) | 5 | 505 | 92.5 | 56 | 94.81 | 250 | 12 (1,2,3,5,6,9,34,36,38,39,42,43) | 24 |
SO42− | (mg/L) | 24 | 849 | 186.5 | 144 | 171.73 | 200 | 16 (1,2,3,5,6,9,12,13,17,34,36,38,39,42,43,46) | 32 |
HCO3− | (mg/L) | 170 | 1139 | 416.6 | 415 | 228.42 | 600 | 13 (1,2,3,5,6,9,13,34,36,38,39,42,43) | 26 |
(b) Irrigation Water Quality [61] | |||||||||
pH | - | 7.2 | 8.5 | 7.9 | 7.8 | 0.29 | 6–8.5 | - | - |
EC | (μS/cm) | 321 | 4645 | 1616.6 | 1462 | 971.22 | 0–3000 | 6 (6,9,39,42,43,46) | 12 |
TDS | (mg/L) | 193 | 2787 | 970 | 877 | 582.90 | 0–2000 | 5 (6,9,39,42,43) | 10 |
Na+ | (meq/L) | 0.6 | 40.1 | 9.8 | 7.9 | 9.03 | 0–40 | 1 (6) | 2 |
K+ | (meq/L) | 0.1 | 4.6 | 0.4 | 0.2 | 0.86 | 0–5 | - | - |
Ca2+ | (meq/l) | 0.4 | 4.1 | 1.9 | 1.8 | 0.82 | 0–20 | - | - |
Mg2+ | (meq/L) | 0.7 | 6.1 | 2.4 | 2.2 | 1.31 | 0–5 | 2 (39,42) | 4 |
Cl− | (meq/L) | 0.1 | 14.4 | 2.6 | 1.6 | 2.70 | 0–30 | - | - |
SO42− | (meq/L) | 0.5 | 17.7 | 3.8 | 3 | 3.58 | 0–20 | - | - |
HCO3− | (meq/L) | 2.8 | 18.7 | 6.8 | 6.8 | 3.74 | 0–10 | 8 (6,9,13,36,38,39,42,43) | 16 |
SAR | - | 0.5 | 28.1 | 6.7 | 5.1 | 6.13 | <10 | 5 (6,9,13,39,43) | 10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.; Shang, Y.; Akhter, G.; Jin, W. Delineation of Saline-Water Intrusion Using Surface Geoelectrical Method in Jahanian Area, Pakistan. Water 2018, 10, 1548. https://doi.org/10.3390/w10111548
Hasan M, Shang Y, Akhter G, Jin W. Delineation of Saline-Water Intrusion Using Surface Geoelectrical Method in Jahanian Area, Pakistan. Water. 2018; 10(11):1548. https://doi.org/10.3390/w10111548
Chicago/Turabian StyleHasan, Muhammad, Yanjun Shang, Gulraiz Akhter, and Weijun Jin. 2018. "Delineation of Saline-Water Intrusion Using Surface Geoelectrical Method in Jahanian Area, Pakistan" Water 10, no. 11: 1548. https://doi.org/10.3390/w10111548