Cannibalism and Habitat Selection of Cultured Chinese Mitten Crab: Effects of Submerged Aquatic Vegetation with Different Nutritional and Refuge Values
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Herbivory Selection Experiment
2.3. Refuge Selection Experiment
2.4. Cannibalism Experiment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marshall, S.; Warburton, K.; Paterson, B.; Mann, D. Cannibalism in juvenile blue-swimmer crabs Portunus pelagicus (Linnaeus, 1766): Effects of body size, moult stage and refuge availability. Appl. Anim. Behav. Sci. 2005, 90, 65–82. [Google Scholar] [CrossRef]
- Januario, S.M.; Navarrete, S.A. Cannibalism and inter-specific predation in early stages of intertidal crab species that compete for refuges. J. Exp. Mar. Biol. Ecol. 2013, 446, 36–44. [Google Scholar] [CrossRef]
- Amarasekare, P. Coexistence of intraguild predators and prey in resource-rich environments. Ecology 2008, 89, 2786–2797. [Google Scholar] [CrossRef] [PubMed]
- Amaral, V.; Paula, J.; Hawkins, S.; Jenkins, S. Cannibalistic interactions in two cooccurring decapod species: Effects of density, food, alternative prey and habitat. J. Exp. Mar. Biol. Ecol. 2009, 368, 88–93. [Google Scholar] [CrossRef]
- Duarte, C.; Jaramillo, E.; Contreras, H.; Acuña, K. Cannibalism and food availability in the talitrid amphipod Orchestoidea tuberculata. J. Sea Res. 2010, 64, 417–421. [Google Scholar] [CrossRef]
- Long, W.C.; Popp, J.; Swiney, K.M.; Van Sant, S.B. Cannibalism in red king crab, Paralithodes camtschaticus (Tilesius, 1815): Effects of habitat type and predator density on predator functional response. J. Exp. Mar. Biol. Ecol. 2012, 422, 101–106. [Google Scholar] [CrossRef]
- Long, W.C.; Van Sant, S.B.; Haaga, J.A. Habitat, predation, growth, and coexistence: Could interactions between juvenile red and blue king crabs limit blue king crab productivity? J. Exp. Mar. Biol. Ecol. 2015, 464, 58–67. [Google Scholar] [CrossRef]
- Takeshita, F.; Tamura, R. Optimal stocking density of juvenile red king crabs Paralithodes camtschaticus under cannibalism consideration. Fish. Sci. 2014, 80, 775–783. [Google Scholar] [CrossRef]
- Waiho, K.; Mustaqim, M.; Fazhan, H.; Norfaizza, W.I.W.; Megat, F.H.; Ikhwanuddin, M. Mating behavior of the orange mud crab, Scylla olivacea: The effect of sex ratio and stocking density on mating success. Aquac. Rep. 2015, 2, 50–57. [Google Scholar] [CrossRef]
- Almeida, M.J.; González-Gordillo, J.I.; Flores, A.A.V.; Queiroga, H. Cannibalism, post-settlement growth rate and size refuge in a recruitment-limited population of the shore crab Carcinus maenas. J. Exp. Mar. Biol. Ecol. 2011, 410, 72–79. [Google Scholar] [CrossRef]
- Sotelano, M.P.; Lovrich, G.A.; Romero, M.C.; Tapella, F. Cannibalism during intermolt period in early stages of the Southern King Crab Lithodes santolla (Molina 1872): Effect of stage and predator-prey proportions. J. Exp. Mar. Biol. Ecol. 2012, 411, 52–58. [Google Scholar] [CrossRef]
- Daly, B.; Swingle, J.S.; Eckert, G.L. Effects of diet, stocking density, and substrate on survival and growth of hatchery-cultured red king crab (Paralithodes camtschaticus) juveniles in Alaska, USA. Aquaculture 2009, 293, 68–73. [Google Scholar] [CrossRef]
- Stoner, A.W.; Ottmar, M.L.; Haines, S.A. Temperature and habitat complexity mediate cannibalism in red king crab: Observations on activity, feeding, and prey defense mechanisms. J. Shellfish Res. 2010, 29, 1005–1012. [Google Scholar] [CrossRef]
- Long, W.C.; Whitefleet-Smith, L. Cannibalism in red king crab: Habitat, ontogeny, and the predator functional response. J. Exp. Mar. Biol. Ecol. 2013, 449, 142–148. [Google Scholar] [CrossRef]
- Stevens, B.G. Settlement, substratum preference, and survival of red king crab Paralithodes camtschaticus (Tilesius, 1815) glaucothoe on natural substrata in the laboratory. J. Exp. Mar. Biol. Ecol. 2003, 283, 63–78. [Google Scholar] [CrossRef]
- Bartholomew, A.; Diaz, R.; Cicchetti, G. New dimensionless indices of structural habitat complexity: Predicted and actual effects on a predator’s foraging success. Mar. Ecol. Prog. Ser. 2000, 206, 45–58. [Google Scholar] [CrossRef]
- Hossie, T.J.; Murray, D.L. You can’t run but you can hide: Refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae. Oecologia 2010, 163, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.D.; Liu, J.S.; Zhang, S.Y.; Lian, Y.X.; Ding, H.Y.; Du, X.; Li, Z.J.; De Silva, S.S. Sustainable farming practices of the Chinese mitten crab (Eriocheir sinensis) around Hongze Lake, lower Yangtze River Basin, China. Ambio 2016, 45, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). Fish Stat J: A Tool for Fishery Statistical Analysis. 2016. Available online: http://www.fao.org/fishery/statistics/software/fishstatj/en (accessed on 21 July 2016).
- Wang, W.; Li, Y.S. Chinese Mitten Crab Ecological Aquaculture; China Agriculture Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Smith, C.; Reay, P. Cannibalism in teleost fish. Rev. Fish Biol. Fish. 1991, 1, 41–64. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Liang, X.; Cui, Y. Stocking models of Chinese mitten crab (Eriocheir japonica sinensis) in Yangtze lakes. Aquaculture 2006, 255, 456–465. [Google Scholar] [CrossRef]
- Josefsson, M. NOBANIS—Invasive Species Fact Sheet—Elodea canadensis, Elodea nuttallii and Elodea callitrichoides—From: Online Database of the European Network on Invasive Alien Species—NOBANIS. 2011. Available online: https://www.nobanis.org/fact-sheets/ (accessed on 29 October 2018).
- Kong, L.; Cai, C.F.; Ye, Y.T.; Chen, D.X.; Wu, P.; Li, E.C.; Chen, L.Q.; Song, L. Comparison of non-volatile compounds and sensory characteristics of Chinese mitten crabs (Eriocheir sinensis) reared in lakes and ponds: Potential environmental factors. Aquaculture 2012, 364–365, 96–102. [Google Scholar] [CrossRef]
- Valinoti, C.E.; Ho, C.K.; Armitage, A.R. Native and exotic submerged aquatic vegetation provide different nutritional and refuge values for macroinvertebrates. J. Exp. Mar. Biol. Ecol. 2011, 409, 42–47. [Google Scholar] [CrossRef]
- Dutil, J.D.; Munro, J.; Pe´loquin, M. Laboratory study of the influence of prey size on vulnerability to cannibalism in snow crab (Chionoecetes opilio O.; Fabricius, 1780). J. Exp. Mar. Biol. Ecol. 1997, 212, 81–94. [Google Scholar] [CrossRef]
- Tian, Z.; Kang, X.; Mu, S. The molt stages and the hepatopancreas contents of lipids, glycogen and selected inorganic elements during the molt cycle of the Chinese mitten crab Eriocheir sinensis. Fish. Sci. 2012, 78, 67–74. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 9th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Czerniejewski, P.; Rybczyk, A.; Wawrzyniak, W. Diet of the Chinese mitten crab, Eriocheir sinensis H. Milne Edwards, 1853, and potential effects of the crab on the aquatic community in the river Odra/Oder Estuary (N.-W. Poland). Crustaceana 2010, 83, 195–205. [Google Scholar] [CrossRef]
- Stark, R. The Impacts of the Chinese Mitten Crab on the San Francisco Bay. 2015. ENVS 190. p. 7. Available online: http://www.csus.edu/envs/documents/theses/spring%202015/855.2015.spring.pdf (accessed on 18 May 2015).
- Veilleux, E.; de Lafontaine, Y. Biological synopsis of the Chinese mitten crab (Eriocheir sinensis). Can. Manuscr. Rep. Fish. Aquat. Sci. 2007, 2812, 45. [Google Scholar]
- Smolders, A.J.P.; Vergeer, L.H.T.; van der Velde, G.; Roelofs, J.G. Phenolic contents of submerged, emergent, and floating leaves of aquatic and semi-aquatic macrophyte species: Why do they differ? Oikos 2000, 91, 307–310. [Google Scholar] [CrossRef]
- Choi, C.; Bareiss, C.; Walenciak, O.; Gross, E.M. Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella. J. Chem. Ecol. 2002, 28, 2223–2235. [Google Scholar] [CrossRef]
- Qiu, J.W.; Kwong, K.L. Effects of macrophytes on feeding and life-history traits of the invasive apple snail Pomacea canaliculata. Freshw. Biol. 2009, 54, 1720–1730. [Google Scholar] [CrossRef]
- Thomaz, S.M.; da Cunha, E.R. The role of macrophytes in habitat structuring in aquatic ecosystems: Methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol. Bras. 2010, 22, 218–236. [Google Scholar] [CrossRef]
- Stevens, B.G.; Swiney, K.M. Post-settlement effects of habitat type and predator size on cannibalism of glaucothoe and juveniles of red king crab Paralithodes camtschaticus. J. Exp. Mar. Biol. Ecol. 2005, 321, 1–11. [Google Scholar] [CrossRef]
- Sogabe, A.; Hamaoka, H.; Fukuta, A.; Shibata, J.Y.; Shoji, J.; Omori, K. Application of stable isotope analysis for detecting filial cannibalism. Behav. Process. 2017, 140, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Møller, H.; Lee, S.Y.; Paterson, B.; Mann, D. Cannibalism contributes significantly to the diet of cultured sand crabs, Portunus pelagicus (L.): A dual stable isotope study. J. Exp. Mar. Biol. Ecol. 2008, 361, 75–82. [Google Scholar] [CrossRef]
- McCutchan, J.H.; Lewis, W.M.; Kendall, C.; McGrath, C.C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and sulphur. Oikos 2003, 102, 378–390. [Google Scholar] [CrossRef]
- Gamboa-Delgado, J.; Peña-Rodríguez, A.; Ricque-Marie, D.; Cruz-Suárez, L.E. Assessment of nutrient allocation and metabolic turnover rate in Pacific white shrimp Litopenaeus vannamei co-fed Live macroalgae Ulva clathrata and inert feed: Dual stable isotope analysis. J. Shellfish Res. 2011, 30, 969–978. [Google Scholar] [CrossRef]
- deVries, M.S.; del Rio, C.M.; Tunstall, T.S.; Dawson, T.E. Isotopic incorporation rates and discrimination factors in mantis shrimp crustaceans. PLoS ONE 2015, 10, e0122334. [Google Scholar] [CrossRef] [PubMed]
- Perkins, M.J.; McDonald, R.A.; van Veen, F.J.F.; Kelly, S.D.; Rees, G.; Bearhop, S. Application of nitrogen and carbon stable isotopes (δ15N and δ13C) to quantify food chain length and trophic structure. PLoS ONE 2014, 9, e93281. [Google Scholar] [CrossRef] [PubMed]
- Kilham, S.S.; Hunte-Brown, M.; Verburg, P.; Pringle, C.M.; Whiles, M.R.; Lips, K.R.; Zandona, E. Challenges for interpreting stable isotope fractionation of carbon and nitrogen in tropical aquatic ecosystems. Verh. Int. Verein. Limnol. 2009, 30, 749–753. [Google Scholar] [CrossRef]
- Adams, T.S.; Sterner, R.W. The effect of dietary nitrogen content on trophic level 15N enrichment. Limnol. Oceanogr. 2000, 45, 601–607. [Google Scholar] [CrossRef]
- Gamboa-Delgado, J.; Cañavate, J.P.; Zerolo, R.; Le Vay, L. Natural carbon stable isotope ratios as indicators of the relative contribution of live and inert diets to growth in larval Senegalese sole (Solea senegalensis). Aquaculture 2008, 280, 190–197. [Google Scholar] [CrossRef]
- Vay, L.L.; Gamboa-Delgado, J. Naturally-occurring stable isotopes as direct measures of larval feeding efficiency, nutrient incorporation and turnover. Aquaculture 2011, 315, 95–103. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, P.B.; Flecker, A.S. Rapid turnover of tissue nitrogen of primary consumers in tropical freshwaters. Oecologia 2006, 148, 12–21. [Google Scholar] [CrossRef] [PubMed]
df | Ms | F | p | |
---|---|---|---|---|
Plant | 1 | 428.408 | 19.080 | 0.002 |
Crab | 1 | 1663.808 | 74.101 | <0.001 |
Plant × Crab | 1 | 728.521 | 32.446 | <0.001 |
Error | 8 | 22.453 |
df | Ms | F | p | |
---|---|---|---|---|
Plant | 1 | 102.668 | 3.538 | 0.097 |
Crab | 1 | 3.741 | 0.129 | 0.729 |
Plant × Crab | 1 | 2200.521 | 75.823 | <0.001 |
Error | 8 | 29.022 |
df | Ms | F | p | |
---|---|---|---|---|
Body mass | ||||
Plant | 2 | 0.073 | 10.196 | <0.001 |
Time | 4 | 1.047 | 147.233 | <0.001 |
Plant × Time | 8 | 0.006 | 0.891 | 0.536 |
Error | 30 | 0.007 | ||
Dead crab individuals per 15 days | ||||
Plant | 2 | 0.822 | 1.088 | 0.350 |
Time | 4 | 30.189 | 39.956 | <0.001 |
Plant × Time | 8 | 0.906 | 1.199 | 0.333 |
Error | 30 | 0.756 | ||
Proportions of dead crabs in molting stages | ||||
Plant | 2 | 209.185 | 9.320 | 0.004 |
Time | 1 | 79.836 | 3.557 | 0.084 |
Plant × Time | 2 | 20.368 | 0.907 | 0.430 |
Error | 12 | 22.445 | ||
δ15N (‰) | ||||
Plant | 2 | 2.128 | 11.902 | <0.001 |
Time | 4 | 7.628 | 42.662 | <0.001 |
Plant × Time | 8 | 0.397 | 2.223 | 0.054 |
Error | 30 | 0.179 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Jeppesen, E.; Gu, X.; Mao, Z.; Chen, H. Cannibalism and Habitat Selection of Cultured Chinese Mitten Crab: Effects of Submerged Aquatic Vegetation with Different Nutritional and Refuge Values. Water 2018, 10, 1542. https://doi.org/10.3390/w10111542
Zeng Q, Jeppesen E, Gu X, Mao Z, Chen H. Cannibalism and Habitat Selection of Cultured Chinese Mitten Crab: Effects of Submerged Aquatic Vegetation with Different Nutritional and Refuge Values. Water. 2018; 10(11):1542. https://doi.org/10.3390/w10111542
Chicago/Turabian StyleZeng, Qingfei, Erik Jeppesen, Xiaohong Gu, Zhigang Mao, and Huihui Chen. 2018. "Cannibalism and Habitat Selection of Cultured Chinese Mitten Crab: Effects of Submerged Aquatic Vegetation with Different Nutritional and Refuge Values" Water 10, no. 11: 1542. https://doi.org/10.3390/w10111542
APA StyleZeng, Q., Jeppesen, E., Gu, X., Mao, Z., & Chen, H. (2018). Cannibalism and Habitat Selection of Cultured Chinese Mitten Crab: Effects of Submerged Aquatic Vegetation with Different Nutritional and Refuge Values. Water, 10(11), 1542. https://doi.org/10.3390/w10111542