A Multi-GCM Assessment of the Climate Change Impact on the Hydrology and Hydropower Potential of a Semi-Arid Basin (A Case Study of the Dez Dam Basin, Iran)
Abstract
:1. Introduction
Problem Statement and Objectives of the Study
2. Materials and Methods
2.1. Study Area and Data
2.2. GCM-Scenario Ensemble
2.3. Hydrological Modeling
2.4. Model Calibration and Validation
2.5. Modeling the Two Reservoirs System
- If Smin < St < Smax, the outflow from the reservoir and the hydropower generation is equal to the water and energy demands of that specific month and neither deficit nor spill will occur.
- If Smax < St, considering the upper limit for the reservoir volume (St ≤ Smax), the reservoir volume (St) is equal to Smax and the excessive amount of water (Smax − St) will spill. In this condition, there is no water or energy deficit and the secondary energy could be produced.
- If St < Smin, considering the lower limit for the reservoir operation (Smin ≤ St), the reservoir volume will be substituted with the minimum operational reservoir storage, i.e., Smin. Therefore, in that month, the deficit is equal to (St − Smin). In this condition, some or all the demands may not be met. If St − Smin ≥ 0, the water is released based on the priorities to meet high prioritized demands. Additionally, the energy generation will be affected in accordance with the reduction of the amount of water flowing through a turbine.
3. Results
3.1. Projected Impact of Climate Change on Temperature and Precipitation Rates
3.2. Hydrological Modeling of the Dez Dam Basin
3.3. Hydrological Simulation under Climate Change Scenarios
3.4. Variation of the Inflow to Dez and Bakhtiari Reservoirs and Hydropower Generation under Climate Change
- It should be noted that the Dez dam is a multi-purpose dam which provides water for different purposes during specific times to meet specified demands. Therefore, the releases from its reservoir are planned and only the part of the release or spill, which is not greater than the penstock or turbine capacity, contributes to the power generation. However, the release from Bakhtiari is only for hydropower generation purposes.
- Having considered that the whole capacity of the Dez hydropower plant is relatively small, compared to its inflow and releases, a significant proportion of the releases (or spills) does not contribute to power generation. Meanwhile, the Bakhtiari reservoir, with a capacity of 5.16 Bm3 and an average inflow of 5.11 Bm3, can save most of the inflows with negligible spills, both in the base period and in the future time horizons (Figure 11a and Figure 12a).
- Additionally, the large capacity of the hydropower plant does not pose any limitation on the energy production. Therefore, in the case of Bakhtiari, there is a direct relationship between the changes in the rates of inflow and energy generation.
- A comparison between the simulated inflow of the Dez reservoir during the future time horizons and the base period suggests that under the climate change conditions, a fewer number of floods and fewer inflows and peak flows would lead to fewer losses through spill (Figure 11b and Figure 12b), which means that more water could be saved in the reservoir to be used to generate electricity.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kallis, G. Droughts Annual Reviews. Environ. Resour. 2008, 33, 85–118. [Google Scholar] [CrossRef]
- Souvignet, M.; Gaese, H.; Ribbe, L.; Kretschmer, N.; Oyarzún, R. Statistical downscaling of precipitation and temperature in north-central Chile: An assessment of possible climate change impacts in an arid Andean watershed. Hydrol. Sci. J. 2010, 55, 41–57. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, Y. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 2. Trends and implications to water resources. J. Hydrol. 2015, 527, 251–261. [Google Scholar] [CrossRef]
- Lalika, M.C.; Meire, P.; Ngaga, Y.M.; Chang’a, L. Understanding watershed dynamics and impacts of climate change and variability in the Pangani River Basin, Tanzania. Ecohydrol. Hydrobiol. 2015, 15, 26–38. [Google Scholar] [CrossRef]
- Modarres, R.; Silva, V.P.R. Rainfall trends in arid and semi-arid regions of Iran. J. Arid Environ. 2007, 70, 344–355. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference crop evapotranspiration over Iran. J. Hydrol. 2011, 399, 422–433. [Google Scholar] [CrossRef]
- Tabari, H.; Somee, B.S.; Zadeh, M.R. Testing for long-term trends in climatic variables in Iran. Atmos. Res. 2011, 100, 132–140. [Google Scholar] [CrossRef]
- Masih, I.; Uhlenbrook, S.; Maskey, S.; Smakhtin, V. Streamflow trends and climate linkages in the Zagros Mountains, Iran. Clim. Chang. 2011, 104, 317–338. [Google Scholar] [CrossRef]
- Abghari, H.; Tabari, H.; Talaee, P.H. River flow trends in the west of Iran during the past 40 years: Impact of precipitation variability. Glob. Planet. Chang. 2013, 101, 52–60. [Google Scholar] [CrossRef]
- Ahani, H.; Kherad, M.; Kousari, M.R.; Roosmalen, L.V.; Aryanfar, R.; Hosseini, S.M. Non-parametric trend analysis of the aridity index for three large arid and semi-arid basins in Iran. Theor. Appl. Climatol. 2013, 112, 553–564. [Google Scholar] [CrossRef]
- Golian, S.; Mazdiyasni, O.; AghaKouchak, A. Trends in meteorological and agricultural droughts in Iran. Theor. Appl. Climatol. 2015, 119, 679–688. [Google Scholar] [CrossRef]
- Kousari, M.R.; Ahani, H.; Hendi-zadeh, R. Temporal and spatial trend detection of maximum air temperature in Iran during 1960–2005. Glob. Planet. Chang. 2013, 111, 97–110. [Google Scholar] [CrossRef]
- Marofi, S.; Soleymani, S.; Salarijazi, M.; Marofi, H. Watershed-wide trend analysis of temperature characteristics in Karun-Dez watershed, southwestern Iran. Theor. Appl. Climatol. 2012, 110, 311–320. [Google Scholar] [CrossRef]
- Soltani, M.; Laux, P.; Kunstmann, H.; Stan, K.; Sohrabi, M.M.; Molanejad, M.; Sabziparvar, A.A.; Ranjbar SaadatAbadi, A.; Ranjbar, F.; Rousta, I.; et al. Assessment of climate variations in temperature and precipitation extreme events over Iran. Theor. Appl. Climatol. 2015, 126, 775–795. [Google Scholar] [CrossRef] [Green Version]
- Adam, J.C.; Hamlet, A.F.; Lettenmaier, D.P. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Process. 2009, 23, 962–972. [Google Scholar] [CrossRef]
- Boyer, C.; Chaumont, D.; Chartier, I.; Roy, A.G. Impact of climate change on the hydrology of St. Lawrence tributaries. J. Hydrol. 2010, 384, 65–83. [Google Scholar] [CrossRef]
- Gan, R.; Luo, Y.; Zuo, Q.; Sun, L. Effects of projected climate change on the glacier and runoff generation in the Naryn River Basin, Central Asia. J. Hydrol. 2015, 523, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Nohara, D.; Kitoh, A.; Hosaka, M.; Oki, T. Impact of Climate Change on River Discharge Projected by Multimodel Ensemble. J. Hydrometeorol. 2006, 7, 1076–1089. [Google Scholar] [CrossRef]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flow regimes at the global scale. J. Hydrol. 2013, 486, 351–364. [Google Scholar] [CrossRef]
- Tong, S.T.Y.; Yang, H.; Chen, H.; Yang, J.Y. Hydrologic impacts of climate change and urbanization in the Las Vegas Wash Watershed, Nevada. J. Water Clim. Chang. 2016, 7, 598–620. [Google Scholar] [CrossRef]
- Kirby, J.M.; Mainuddin, M.; Mpelasoka, F.; Ahmad, M.D.; Palash, W.; Quadir, M.E.; Shah-Newaz, S.M.; Hossain, M.M. The impact of climate change on regional water balances in Bangladesh. Clim. Chang. 2016, 135, 481–491. [Google Scholar] [CrossRef]
- Tall, M.; Sylla, M.B.; Diallo, I.; Pal, J.S.; Faye, A.; Mbaye, M.L.; Gaye, A.T. Projected impact of climate change in the hydroclimatology of Senegal with a focus over the Lake of Guiers for the twenty-first century. Theor. Appl. Climatol. 2017, 129, 655–665. [Google Scholar] [CrossRef]
- He, Z.; Wang, Z.; Suen, C.J.; Ma, X. Hydrologic sensitivity of the Upper San Joaquin River Watershed in California to climate change scenarios. Hydrol. Res. 2013, 44, 723–736. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; Pérez-Sánchez, J.; Carrillo-García, J.; Soto, J. Using SWAT and Fuzzy TOPSIS to Assess the Impact of Climate Change in the Headwaters of the Segura River Basin (SE Spain). Water 2017, 9, 149. [Google Scholar] [CrossRef]
- Xu, H.; Luo, Y. Climate change and its impacts on river discharge in two climate regions in China. Hydrol. Earth Syst. Sci. 2015, 19, 4609–4618. [Google Scholar] [CrossRef] [Green Version]
- Musau, J.; Sang, J.; Gathenya, J.; Luedeling, E. Hydrological responses to climate change in Mt. Elgon watersheds. J. Hydrol. Reg. Stud. 2015, 3, 233–246. [Google Scholar] [CrossRef]
- Azari, M.; Moradi, H.R.; Saghafian, B.; Faramarzi, M. Climate change impacts on streamflow and sediment yield in the North of Iran. Hydrol. Sci. J. 2016, 16, 123–133. [Google Scholar] [CrossRef]
- Shahni Danesh, A.; Ahadi, M.S.; Fahmi, H.; Habibi Nokhandan, M.; Eshraghi, H. Climate change impact assessment on water resources in Iran: Applying dynamic and statistical downscaling methods. J. Water Clim. Chang. 2016, 7, 551–577. [Google Scholar] [CrossRef]
- Rafiei Emam, A.; Kappas, M.; Hosseini, S.Z. Assessing the impact of climate change on water resources, crop production and land degradation in a semi-arid river basin. Hydrol. Res. 2015, 46, 854–870. [Google Scholar] [CrossRef]
- Gohari, A.; Bozorgi, A.; Madani, K.; Elledge, J.; Berndtsson, R. Adaptation of surface water supply to climate change in central Iran. J. Water Clim. Chang. 2014, 5, 391–407. [Google Scholar] [CrossRef]
- Solaymani, H.R.; Gosain, A.K. Assessment of climate change impacts in a semi-arid watershed in Iran using regional climate models. J. Water Clim. Chang. 2015, 6, 161–180. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Y.J.; Xiao, W.; Wang, J.; Huang, Y.; Yang, H. Climate Change Impacts on Flow and Suspended Sediment Yield in Headwaters of High-Latitude Regions—A Case Study in China’s Far Northeast. Water 2017, 9, 966. [Google Scholar] [CrossRef]
- Fang, G.; Yang, J.; Chen, Y.; Li, Z.; De Maeyer, P. Impact of GCM structure uncertainty on hydrological processes in an arid area of China. Hydrol. Res. 2018, 49, 893–907. [Google Scholar] [CrossRef]
- Van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I. Global river discharge and water temperature under climate change. Glob. Environ. Chang. 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Elsner, M.M.; Cuo, L.; Voisin, N.; Deems, J.S.; Hamlet, A.F.; Vano, J.A.; Mickelson, K.E.B.; Lee, S.-Y.; Lettenmaier, D.P. Implications of 21st century climate change for the hydrology of Washington State. Clim. Chang. 2010, 102, 225–260. [Google Scholar] [CrossRef] [Green Version]
- Pervez, M.S.; Henebry, G.M. Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin. J. Hydrol. Reg. Stud. 2015, 3, 285–311. [Google Scholar] [CrossRef]
- Bartolini, E.; Claps, P.; D’Odorico, P. Interannual variability of winter precipitation in the European Alps: Relations with the North Atlantic oscillation. Hydrol. Earth Syst. Sci. 2009, 13, 17–25. [Google Scholar] [CrossRef]
- Lambrecht, A.; Mayer, C. Temporal variability of the nonsteady contribution from glaciers to water discharge in western Austria. J. Hydrol. 2009, 376, 353–361. [Google Scholar] [CrossRef]
- Abrishamchi, A.; Jamali, S.; Madani, K.; Hadian, S. Climate Change and Hydropower in Iran’s Karkheh River Basin. In Proceedings of the World Environmental and Water Resources Congress: Crossing Boundaries, Albuquerque, NM, USA, 20–24 May 2012; Loucks, E.D., Ed.; ASCE Library: Reston, VA, USA, 2012. [Google Scholar]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC secretariat, Geneva. Clim. Chang. Policy Renewed Environ. Ethic 2008, 21, 85–101. [Google Scholar]
- Xu, C.-Y.; Singh, V.P. Review on regional water resources assessment models under stationary and changing climate. Water Resour. Manag. 2004, 18, 591–612. [Google Scholar] [CrossRef]
- Jahandideh-Tehrani, M.; Haddad, O.B.; Loáiciga, H.A. Hydropower reservoir management under climate change: The Karoon reservoir system. Water Resour. Manag. 2015, 29, 749–770. [Google Scholar] [CrossRef]
- Jamali, S.; Abrishamchi, A.; Marino, M. Climate Change Impact Assessment on Hydrology of Karkheh Basin. Proc. Inst. Civ. Eng.-Water Manag. 2013, 166, 93–104. [Google Scholar] [CrossRef]
- Wang, S.; McGrath, R.; Semmler, T.; Sweeney, C.; Nolan, P. The impact of the climate change on discharge of Suir River Catchment (Ireland) under different climate scenarios. Nat. Hazard. Earth Syst. 2006, 6, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Graham, L.P.; Hagemann, S.; Jaun, S.; Beniston, M. On interpreting hydrological change from regional climate models. Clim. Chang. 2007, 81, 97–122. [Google Scholar] [CrossRef] [Green Version]
- Prudhomme, C.; Davies, H. Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: Baseline climate. Clim. Chang. 2009, 93, 177–195. [Google Scholar] [CrossRef]
- Habets, F.; Boé, J.; Déqué, M.; Ducharne, A.; Gascoin, S.; Hachour, A.; Martin, E.; Pagé, C.; Sauquet, E.; Terray, L.; et al. Impact of climate change on the hydrogeology of two basins in northern France. Clim. Chang. 2013, 121, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Sanna, A.; Herrera, S.; Llasat, M.C.; Gutiérrez, J.M. Large biases and inconsistent climate change signals in ENSEMBLES regional projections. Clim. Chang. 2013, 120, 859–869. [Google Scholar] [CrossRef] [Green Version]
- Hosseinzadehtalaei, P.; Tabari, H.; Willems, P. Uncertainty assessment for climate change impact on intense precipitation: How many model runs do we need? Int. J. Climatol. 2017, 37, 1105–1117. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. IPCC, 2007: Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 966. ISBN 978-0-521-70596-7. [Google Scholar]
- Semenov, M.A. Development of high-resolution UKCIP02-based climate change scenarios in the UK. Agric. For. Meteorol. 2007, 144, 127–138. [Google Scholar] [CrossRef]
- Semenov, M.A.; Stratonovitch, P. Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim. Res. 2010, 41, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Seibert, J.; Vis, M.J.P. Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrol. Earth Syst. Sci. 2012, 16, 3315–3325. [Google Scholar] [CrossRef] [Green Version]
- Bergström, S. The HBV Model-Its Structure and Applications; SMHI Report RH No. 4; SMHI: Northkoping, Sweden, 1992.
- Vidal, J.P.; Wade, S.D. Multimodel projections of catchment-scale precipitation regime. J. Hydrol. 2008, 353, 143–158. [Google Scholar] [CrossRef]
- Nazif, S.; Karamouz, M. Evaluation of climate change impacts on streamflow to a multiple reservoir system using a data-based mechanistic model. J. Water Clim. Chang. 2014, 5, 610–624. [Google Scholar] [CrossRef]
- Ashraf Vaghefi, S.; Mousavi, S.J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. Hydrol. Process. 2014, 28, 2018–2032. [Google Scholar] [CrossRef]
Sub-Basins | Area (Km2) | Elevation | Average | ||
---|---|---|---|---|---|
T (°C) | P (mm/y) | Q (Mm3) | |||
Tireh (SUB-1) | 3477 | 1551 | 13.93 | 603 | 486 |
Marbereh (SUB-2) | 2553 | 1943 | 12.35 | 472.3 | 282 |
Sazar (SUB-3) | 3281 | 1574 | 14.19 | 791.2 | 3231 |
Bakhtiari (SUB-4) | 5973 | 2460 | 13.89 | 673.3 | 4830 |
Research Centre | Country | GCM | Acronym | Resolution |
---|---|---|---|---|
National Centre for Atmospheric Research | USA | CCSM3 | CCSM | 1.4 × 1.4° |
Max-Planck Institute for Meteorology | Germany | ECHAM5-OM | ECHAM5 | 1.9 × 1.9° |
Geophysical Fluid Dynamics Lab | USA | GFDL-CM2.1 | GFDL | 2 × 2.5° |
UK Meteorological Office | UK | HadCM3 | HadCM3 | 2.5 × 3.75° |
Institute for Numerical Mathematics | Russia | INM-CM3.0 | INCM3 | 4 × 5° |
Institute Pierre Simon Laplace | France | IPSL-CM4 | IPSL | 2.5 × 3.75° |
Period | Reff | R2 | MDiff (%) | ||
---|---|---|---|---|---|
SUB-1 | Calibration | 1989–2002 | 0.68 | 0.70 | 6 |
Validation | 2004–2008 | 0.70 | 0.79 | −19 | |
SUB-2 | Calibration | 1989–2004 | 0.62 | 0.62 | 8 |
Validation | 2004–2009 | 0.43 | 0.78 | −24 | |
SUB-3 | Calibration | 1989–2004 | 0.63 | 0.64 | 1 |
Validation | 2004–2009 | 0.50 | 0.63 | −3 | |
SUB-4 | Calibration | 1987–2001 | 0.65 | 0.68 | 2 |
Validation | 2001–2007 | 0.45 | 0.60 | −18 |
GCM | Scenario-Time Horizon | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A1B | A2 | B1 | ||||||||
2020 | 2050 | 2080 | 2020 | 2050 | 2080 | 2020 | 2050 | 2080 | ||
ECHAM5 | SUB-1 | −7.8 | −11.6 | −15.3 | −7.6 | −15.4 | −13 | −3.6 | −19.1 | −19.3 |
SUB-2 | 1.7 | −12.3 | −19.3 | −0.6 | −10.3 | −26.1 | 2.8 | −16.8 | −20.4 | |
SUB-3 | −5.3 | −1.3 | −1.5 | −5.9 | −6 | 1.7 | −3.1 | −10.4 | −7.2 | |
SUB-4 | −7 | −14.9 | −19.8 | −7.7 | −14.8 | −20.4 | −6 | −15.4 | −20.8 | |
HadCM3 | SUB-1 | −0.8 | −5.9 | −9.4 | −13.1 | −10.6 | 1.7 | −16.5 | −0.4 | 1.8 |
SUB-2 | 6.8 | −5.5 | −8.6 | −3.9 | −4.7 | −4.7 | −5.9 | 6.4 | 4.1 | |
SUB-3 | 0.4 | 0.1 | 3.1 | −9.2 | −1.2 | 13 | −11.8 | 6.7 | 10.2 | |
SUB-4 | −13.6 | −8.2 | −10.4 | −10.2 | −9.5 | −6.4 | −10.8 | −1.8 | −3.1 | |
GFDL | SUB-1 | −9.8 | −1.4 | −17.5 | −8.5 | −5.9 | −28.6 | −9 | −9.2 | −15.2 |
SUB-2 | −1.3 | −0.9 | −18.8 | 0.1 | −3.3 | −29.6 | −1.5 | −4.3 | −10.7 | |
SUB-3 | −5.9 | 9.1 | −2.6 | −5.4 | 3.6 | −12.4 | −0.7 | −5.8 | −4.6 | |
SUB-4 | −9.3 | −9 | −18.5 | −7.1 | −9.3 | −24.5 | −8.6 | −9.7 | −13.6 | |
CCSM | SUB-1 | −12.5 | −18.1 | −16 | 3.8 | −13.2 | −11.1 | −11.8 | −9.4 | −9 |
SUB-2 | −1.5 | −10.9 | −13.7 | 11.2 | −7.5 | −14.2 | −0.9 | 0 | −2.3 | |
SUB-3 | −8.2 | −6.9 | −1.8 | 4.2 | −2.1 | 3.3 | −6.9 | −2 | 1 | |
SUB-4 | −20.8 | −15.4 | −15.3 | −3.3 | −11.5 | −14.6 | −8.9 | −8.9 | −9.9 | |
INCM3 | SUB-1 | −6.5 | −12.3 | −17.3 | −5.3 | −9.9 | −12.4 | −0.2 | −8.2 | 1.7 |
SUB-2 | 2.2 | −2.4 | −11 | 1.7 | −5.1 | −7.3 | 6.1 | −2 | 7.3 | |
SUB-3 | −4.8 | −3.5 | −4.1 | −4.3 | −2.8 | 2.6 | −0.6 | −2 | 7 | |
SUB-4 | −5.9 | −8.8 | −12 | −6.3 | −10.8 | −10.7 | −3.9 | −7.6 | −3.2 | |
IPSL | SUB-1 | −12.2 | −18.9 | −33.3 | −14.5 | −22.7 | −29.6 | −12.6 | −25.5 | −25.8 |
SUB-2 | −5.1 | −12.9 | −33.3 | −4.3 | −15.9 | −30.8 | −4.2 | −16 | −21 | |
SUB-3 | −9.2 | −8.7 | −16.9 | −11 | −12.2 | −13.4 | −10.5 | −14.2 | −13.3 | |
SUB-4 | −11.8 | −15.5 | −26.7 | −11.6 | −17.2 | −25 | −10.3 | −18.1 | −21.9 |
GCM | Scenario-Time Horizon | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
A1B | A2 | B1 | ||||||||
2020 | 2050 | 2080 | 2020 | 2050 | 2080 | 2020 | 2050 | 2080 | ||
ECHAM5 | ∆I (B) 1 | −7 | −14.9 | −19.9 | −7.7 | −14 | −20.5 | −5.9 | −15.3 | −20.8 |
∆E (B) | −6.8 | −16.9 | −22.7 | −7.6 | −16.8 | −23.6 | −5.3 | −17.2 | −24.1 | |
∆I (D) 2 | −4.7 | −8.3 | −11.5 | −5.4 | −10 | −10.7 | −3.2 | −12 | −14.3 | |
∆E (D) | 2.4 | 2.5 | 2.3 | 2.4 | 2.4 | 2.3 | 2.1 | 2.2 | 2 | |
HadCM3 | ∆I (B) | −13.6 | −8.2 | −10.4 | −10.1 | −9.5 | −6.5 | −10.7 | −1.7 | −3.1 |
∆E (B) | −15 | −8.4 | −11.1 | −10.4 | −10 | −5.8 | −11 | −0.9 | −2.1 | |
∆I (D) | −6.8 | −3.5 | −3.7 | −8.2 | −4.8 | 2.5 | −9.6 | 3.2 | 3.6 | |
∆E (D) | 1.5 | 2.4 | 2.6 | 2.2 | 2.5 | 2.2 | 2.1 | 2 | 1.9 | |
GFDL | ∆I (B) | −9.3 | −9.1 | −18.6 | −7 | −9.4 | −24.6 | −8.5 | −9.7 | −13.6 |
∆E (B) | −9.4 | −9.4 | −21.1 | −6.7 | −9.8 | −28.9 | −8.6 | −9.9 | −15 | |
∆I (D) | −6.4 | −0.6 | −11.1 | −4.8 | −2.9 | −18.7 | −4 | −6.7 | −8.7 | |
∆E (D) | 2.3 | 2.1 | 2.3 | 2.2 | 2.3 | 0.5 | 1.8 | 2.4 | 2.4 | |
CCSM | ∆I (B) | −20.8 | −15.4 | −15.3 | −3.3 | −11.5 | −14.6 | −8.8 | −8.8 | −9.9 |
∆E (B) | −24.1 | −17.5 | −17.3 | −2.2 | −12.2 | −16.3 | −8.9 | −9 | −10.3 | |
∆I (D) | −14.6 | −10.7 | −8.7 | 1.3 | −6.4 | −6.3 | −6.5 | −4.6 | −4.2 | |
∆E (D) | 1 | 2.5 | 2.6 | 1.7 | 2.2 | 2.8 | 2.4 | 2.2 | 2.6 | |
INCM3 | ∆I (B) | −5.9 | −8.8 | −12 | −6.3 | −10.8 | −10.7 | −3.8 | −7.6 | −3.2 |
∆E (B) | −5.5 | −8.8 | −12.9 | −6 | −11.2 | −11.3 | −3 | −7.6 | −2.4 | |
∆I (D) | −3.8 | −5.2 | −7.5 | −3.9 | −6.2 | −4.1 | −0.9 | −3.9 | 2.3 | |
∆E (D) | 2.2 | 2.6 | 2.4 | 2.1 | 2.3 | 2.4 | 1.9 | 2 | 1.7 | |
IPSL | ∆I (B) | −11.7 | −15.5 | −26.8 | −11.5 | −17.2 | −25.1 | −10.2 | −18.1 | −22 |
∆E (B) | −12.4 | −17.4 | −31.8 | −12 | −19.3 | −29.7 | −10.5 | −20.6 | −25.6 | |
∆I (D) | −9.2 | −11.5 | −21.8 | −9.8 | −13.9 | −19.4 | −8.8 | −15.2 | −17.4 | |
∆E (D) | 2 | 2.3 | −1.3 | 2.1 | 1.9 | 0 | 2.3 | 1.6 | 1.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi, R.S.; Ahmadizadeh, M.; Marofi, S. A Multi-GCM Assessment of the Climate Change Impact on the Hydrology and Hydropower Potential of a Semi-Arid Basin (A Case Study of the Dez Dam Basin, Iran). Water 2018, 10, 1458. https://doi.org/10.3390/w10101458
Mousavi RS, Ahmadizadeh M, Marofi S. A Multi-GCM Assessment of the Climate Change Impact on the Hydrology and Hydropower Potential of a Semi-Arid Basin (A Case Study of the Dez Dam Basin, Iran). Water. 2018; 10(10):1458. https://doi.org/10.3390/w10101458
Chicago/Turabian StyleMousavi, Roya Sadat, Mojtaba Ahmadizadeh, and Safar Marofi. 2018. "A Multi-GCM Assessment of the Climate Change Impact on the Hydrology and Hydropower Potential of a Semi-Arid Basin (A Case Study of the Dez Dam Basin, Iran)" Water 10, no. 10: 1458. https://doi.org/10.3390/w10101458
APA StyleMousavi, R. S., Ahmadizadeh, M., & Marofi, S. (2018). A Multi-GCM Assessment of the Climate Change Impact on the Hydrology and Hydropower Potential of a Semi-Arid Basin (A Case Study of the Dez Dam Basin, Iran). Water, 10(10), 1458. https://doi.org/10.3390/w10101458