Potential Changes of Annual-Averaged Nutrient Export in the South Saskatchewan River Basin under Climate and Land-Use Change Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Calibration of the SPARROW Nutrient Export Model
2.3. Climate Change Scenarios
2.4. Land-Use Change Scenarios and Population Growth
2.5. Modeling Procedure
3. Results
3.1. Analysis of Climate Change Scenarios
3.2. Future Changes of Nutrient Exports
3.3. Changes of Nutrient Loads in the Main Basins
3.4. Sensitivity Analysis of Nutrient Export Changes
4. Discussion
4.1. Impact of Climate and Land-Use Changes on Nutrient Exports
4.2. Model Uncertainty and Limitations
5. Conclusions
- Annual averages of TN and TP export in the SSR are going to increase in the range of 0.9–1.28 kg km year and 0.12–0.17 kg km year, respectively, by the end of the century, due to climate and land-use changes.
- Since runoff is predicted to decrease in the next decades, annual-averaged nutrient concentrations are expected to increase at a more rapid rate than loads; this will bring significant challenges in meeting water quality standards in the SSR basin.
- According to the model projections, higher increases of TP compared to TN are expected: TP is going to increase by ∼36%, and TN is going to increase by ∼21%, by the end of the century.
- Projected changes of nutrient export are expected to vary at the basin scale; the largest changes of annual-averaged nutrient loads are predicted to occur in the BR and RDR basins and nutrient loads from the OR basin could vary the least.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wheater, H.; Evans, E. Land use, water management and future flood risk. Land Use Policy 2009, 26, S251–S264. [Google Scholar] [CrossRef]
- DeBeer, C.M.; Wheater, H.S.; Carey, S.K.; Chun, K.P. Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: A review and synthesis. Hydrol. Earth Syst. Sci. 2016, 20, 1573. [Google Scholar] [CrossRef]
- Bouraoui, F.; Galbiati, L.; Bidoglio, G. Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (UK). Hydrol. Earth Syst. Sci. Discuss. 2002, 6, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, P.; Wilby, R.; Battarbee, R.; Kernan, M.; Wade, A.J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef] [Green Version]
- Conlan, K.; Lane, S.; Ormerod, S.; Wade, T. Preparing for climate change impacts on freshwater ecosystems (PRINCE): Results. In Science Report to Environment Agency No. SC030300/SR; Environment Agency: Bristol, UK, 2007. [Google Scholar]
- Cole, J.J.; Peierls, B.L.; Caraco, N.F.; Pace, M.L. Nitrogen loading of rivers as a human-driven process. In Humans as Components of Ecosystems; Springer: Berlin, Germany, 1993; pp. 141–157. [Google Scholar]
- Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.; Elmgren, R.; Caraco, N.; Jordan, T.; et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In Nitrogen Cycling in the North Atlantic Ocean and Its Watersheds; Springer: Berlin, Germany, 1996; pp. 75–139. [Google Scholar]
- Cooke, G.D.; Welch, E.B.; Peterson, S.; Nichols, S.A. Restoration and Management of Lakes and Reservoirs; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Ross, M.R. Fisheries Conservation and Management; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Li, S.; Elliott, J.A.; Tiessen, K.H.; Yarotski, J.; Lobb, D.A.; Flaten, D.N. The effects of multiple beneficial management practices on hydrology and nutrient losses in a small watershed in the Canadian Prairies. J. Environ. Qual. 2011, 40, 1627–1642. [Google Scholar] [CrossRef] [PubMed]
- Wheater, H.; Gober, P. Water security in the Canadian Prairies: Science and management challenges. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2013, 371. [Google Scholar] [CrossRef] [PubMed]
- Pomeroy, J.; Fang, X.; Williams, B. Impacts of Climate Change on Saskatchewan’s Water Resources; Centre for Hydrology, University of Saskatchewan: Saskatoon, Canada, 2009. [Google Scholar]
- Khaliq, M.; Sushama, L.; Monette, A.; Wheater, H. Seasonal and extreme precipitation characteristics for the watersheds of the Canadian Prairie Provinces as simulated by the NARCCAP multi-RCM ensemble. Clim. Dyn. 2015, 44, 255–277. [Google Scholar] [CrossRef]
- Bruneau, J.; Toth, B. Dove-Tailed Physical and Socioeconomic Results in the SSRB. In Climate Change and Water: SSRB Final Technical Report; Martz, L., Bruneau, J., Rolfeeds, J.T., Eds.; Technical Report; University ofSasaktchewan: Saskatoon, SK, Canada, 2007. [Google Scholar]
- Lapp, S.; Byrne, J.; Townshend, I.; Kienzle, S. Climate warming impacts on snowpack accumulation in an alpine watershed. Int. J. Climatol. 2005, 25, 521–536. [Google Scholar] [CrossRef] [Green Version]
- Byrne, J.; Kienzle, S.; Johnson, D.; Duke, G.; Gannon, V.; Selinger, B.; Thomas, J. Current and future water issues in the Oldman River Basin of Alberta, Canada. Water Sci. Technol. 2006, 53, 327. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model Development 1. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Bicknell, B.R.; Imhoff, J.C.; Kittle, J.L., Jr.; Donigan, A.S., Jr.; Johanson, R.C. Hydrological Simulation Program: Fortran User’s Manual for Release 11; EPA/600/R-97/080; Environment Protection Agency: Cincinnati, OH, USA, 1997; 755p.
- Young, R.; Onstad, C.; Bosch, D.; Anderson, W. AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 1989, 44, 168–173. [Google Scholar]
- Borah, D.K.; Bera, M. Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications. Trans. ASAE 2004, 47, 789. [Google Scholar] [CrossRef]
- Smith, R.A.; Schwarz, G.E.; Alexander, R.B. Regional interpretation of water-quality monitoring data. Water Resour. Res. 1997, 33, 2781–2798. [Google Scholar] [CrossRef] [Green Version]
- Robertson, D.M.; Saad, D.A.; Schwarz, G.E. Spatial variability in nutrient transport by HUC8, state, and subbasin based on Mississippi/Atchafalaya River Basin SPARROW models. J. Am. Water Resour. Assoc. 2014, 50, 988–1009. [Google Scholar] [CrossRef]
- Morales-Marín, L.; Wheater, H.; Lindenschmidt, K. Assessment of nutrient loadings of a large multipurpose prairie reservoir. J. Hydrol. 2017, 550, 166–185. [Google Scholar] [CrossRef]
- Benoy, G.A.; Jenkinson, R.W.; Robertson, D.M.; Saad, D.A. Nutrient delivery to Lake Winnipeg from the Red—Assiniboine River Basin–A binational application of the SPARROW model. Can. Water Resour. J. Hydr. 2016, 41, 429–447. [Google Scholar] [CrossRef]
- Schwarz, G.E.; Hoos, A.B.; Alexanser, R.B.; Smith, R.A. The SPARROW Surface Water-Quality Model—Theory, Applications and User Documentation; Technical Report 6–B3; U.S. Geological Survey: Reston, VA, USA, 2006.
- Consortium, P.C.I. Statistically Downscaled Climate Scenarios; 2016. Available online: https://www.pacificclimate.org/data/statistically-downscaled-climate-scenarios (accessed on 12 October 2018).
- Bürger, G.; Sobie, S.; Cannon, A.; Werner, A.; Murdock, T. Downscaling extremes: An intercomparison of multiple methods for future climate. J. Clim. 2013, 26, 3429–3449. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- McKenney, D.W.; Hutchinson, M.F.; Papadopol, P.; Lawrence, K.; Pedlar, J.; Campbell, K.; Milewska, E.; Hopkinson, R.F.; Price, D.; Owen, T. Customized spatial climate models for North America. Bull. Am. Meteorol. Soc. 2011, 92, 1611. [Google Scholar] [CrossRef]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.; Lamarque, J.; Matsumoto, K.; Montzka, S.; Raper, S.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Tanzeeba, S.; Gan, T.Y. Potential impact of climate change on the water availability of South Saskatchewan River Basin. Clim. Chang. 2012, 112, 355–386. [Google Scholar] [CrossRef]
- Solomon, S. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Schlamadinger, B.; Bird, N.; Johns, T.; Brown, S.; Canadell, J.; Ciccarese, L.; Dutschke, M.; Fiedler, J.; Fischlin, A.; Fearnside, P.; et al. A synopsis of land use, land-use change and forestry (LULUCF) under the Kyoto Protocol and Marrakech Accords. Environ. Sci. Policy 2007, 10, 271–282. [Google Scholar] [CrossRef]
- Agriculture and Agri-Food Canada. Agriculture and Agri-Food Canada—Land Use 1990, 2000, 2010. 2016. Available online: https://open.canada.ca/data/en/dataset/18e3ef1a-497c-40c6-8326-aac1a34a0dec (accessed on 12 October 2018).
- Statistics Canada. Population Projections for Canada, Provinces and Territories, Catalogue No. 91-520-X; Statistics Canada: Ottawa, ON, Canada, 2010.
- Kaste, Ø.; Wright, R.; Barkved, L.; Bjerkeng, B.; Engen-Skaugen, T.; Magnusson, J.; Sælthun, N. Linked models to assess the impacts of climate change on nitrogen in a Norwegian river basin and fjord system. Sci. Total Environ. 2006, 365, 200–222. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, E.; Kronvang, B.; Meerhoff, M.; Søndergaard, M.; Hansen, K.M.; Andersen, H.E.; Lauridsen, T.L.; Liboriussen, L.; Beklioglu, M.; Özen, A.; et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J. Environ. Qual. 2009, 38, 1930–1941. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.M.; Saad, D.A.; Christiansen, D.E.; Lorenz, D.J. Simulated impacts of climate change on phosphorus loading to Lake Michigan. J. Great Lakes Res. 2016, 42, 536–548. [Google Scholar] [CrossRef]
- Mailhot, A.; Beauregard, I.; Talbot, G.; Caya, D.; Biner, S. Future changes in intense precipitation over Canada assessed from multi-model NARCCAP ensemble simulations. Int. J. Climatol. 2012, 32, 1151–1163. [Google Scholar] [CrossRef]
- Jeong, D.I.; Sushama, L.; Diro, G.T.; Khaliq, M.N.; Beltrami, H.; Caya, D. Projected changes to high temperature events for Canada based on a regional climate model ensemble. Clim. Dyn. 2016, 46, 3163–3180. [Google Scholar] [CrossRef]
- Donner, S.D.; Kucharik, C.J.; Foley, J.A. Impact of changing land use practices on nitrate export by the Mississippi River. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Wiley, M.; Hyndman, D.; Pijanowski, B.; Kendall, A.; Riseng, C.; Rutherford, E.; Cheng, S.; Carlson, M.; Tyler, J.; Stevenson, R.; et al. A multi-modeling approach to evaluating climate and land use change impacts in a Great Lakes River Basin. Hydrobiologia 2010, 657, 243–262. [Google Scholar] [CrossRef]
- LaBeau, M.B.; Robertson, D.M.; Mayer, A.S.; Pijanowski, B.C.; Saad, D.A. Effects of future urban and biofuel crop expansions on the riverine export of phosphorus to the Laurentian Great Lakes. Ecol. Model. 2014, 277, 27–37. [Google Scholar] [CrossRef]
- Robertson, D.M.; Saad, D.A. SPARROW models used to understand nutrient sources in the Mississippi/Atchafalaya River Basin. J. Environ. Qual. 2013, 42, 1422–1440. [Google Scholar] [CrossRef] [PubMed]
Model Parameter | Units | Mean | Standard | p-Value |
---|---|---|---|---|
Coefficient | Error | |||
Total nitrogen (TN) | ||||
Sources () | ||||
point (population) | dimensionless | 0.34 | 0.20 | 0.028 |
forest land | kg km year | 210.16 | 56.60 | <0.001 |
total fertilizer | kg km year | 0.03 | 0.008 | <0.001 |
urban land | kg km year | 55.96 | 466.58 | 0.452 |
Land-to-water delivery () | ||||
catchment slope | % | −4.27 | 1.88 | 0.012 |
precipitation | cm | 0.003 | 0.001 | 0.001 |
temperature | C | 0.203 | 0.074 | 0.004 |
soil permeability | cm h | −0.146 | 0.051 | 0.002 |
Aquatic nutrient removal () | ||||
small streams (Q ≤ 1 m s) | m year | 2.37 | 0.544 | <0.001 |
large streams (Q > 1 m s) | m year | 0.019 | 0.170 | 0.455 |
reservoirs | m year | 5.75 | 2.35 | 0.008 |
Total phosphorous (TP) | ||||
Sources () | ||||
point (population) | dimensionless | 0.081 | 0.045 | 0.038 |
forest land | kg km year | 26.31 | 8.37 | 0.001 |
total fertilizer | kg km year | 0.002 | 0.001 | <0.001 |
urban land | kg km year | 191.66 | 93.61 | 0.021 |
Land-to-water delivery () | ||||
catchment slope | % | −6.40 | 2.36 | 0.004 |
precipitation | cm | 0.003 | 0.001 | 0.018 |
temperature | C | 0.443 | 0.101 | <0.001 |
soil permeability | cm h | −0.027 | 0.038 | 0.246 |
Aquatic nutrient removal () | ||||
small streams (Q ≤ 1 m s) | m year | 0.523 | 0.308 | 0.046 |
reservoirs | m year | 25.35 | 7.87 | 0.001 |
Period | Scenario | Basins | |||
---|---|---|---|---|---|
OR | BR | RDR | LSSR | ||
2010–2039 | RCP 2.6 | 3.10 | −5.55 | −0.10 | −1.26 |
RCP 4.5 | −4.31 | −13.20 | −13.75 | −10.02 | |
RCP 8.5 | −2.45 | −16.85 | −9.85 | −10.12 | |
2040–2069 | RCP 2.6 | 1.40 | −16.10 | −11.20 | −8.65 |
RCP 4.5 | −4.93 | −16.70 | −16.64 | −12.33 | |
RCP 8.5 | 0.40 | −18.40 | −12.85 | −10.33 | |
2070–2099 | RCP 2.6 | −1.85 | −11.00 | −12.25 | −7.86 |
RCP 4.5 | −4.40 | −16.25 | −20.41 | −12.70 | |
RCP 8.5 | 3.65 | −10.85 | −7.90 | −4.90 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Marín, L.; Wheater, H.; Lindenschmidt, K.-E. Potential Changes of Annual-Averaged Nutrient Export in the South Saskatchewan River Basin under Climate and Land-Use Change Scenarios. Water 2018, 10, 1438. https://doi.org/10.3390/w10101438
Morales-Marín L, Wheater H, Lindenschmidt K-E. Potential Changes of Annual-Averaged Nutrient Export in the South Saskatchewan River Basin under Climate and Land-Use Change Scenarios. Water. 2018; 10(10):1438. https://doi.org/10.3390/w10101438
Chicago/Turabian StyleMorales-Marín, Luis, Howard Wheater, and Karl-Erich Lindenschmidt. 2018. "Potential Changes of Annual-Averaged Nutrient Export in the South Saskatchewan River Basin under Climate and Land-Use Change Scenarios" Water 10, no. 10: 1438. https://doi.org/10.3390/w10101438
APA StyleMorales-Marín, L., Wheater, H., & Lindenschmidt, K.-E. (2018). Potential Changes of Annual-Averaged Nutrient Export in the South Saskatchewan River Basin under Climate and Land-Use Change Scenarios. Water, 10(10), 1438. https://doi.org/10.3390/w10101438