Artificial Neural Networks for Predicting the Water Retention Curve of Sicilian Agricultural Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Artificial Neural Networks (ANNs)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wösten, J.H.M.; Lilly, A.; Nemes, A.; Le Bas, C. Development and use of a database of hydraulic properties of European soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- De Melo Moreira, T.; Pedrollo, O.C. Artificial neural networks for estimating soil water retention curve using fitted and measured data. Appl. Environ. Soil Sci. 2015, 2015, 535216. [Google Scholar] [CrossRef]
- Jana, R.B.; Mohanty, B.P.; Springer, E.P. Multiscale Pedotransfer Functions for Soil Water Retention. Vadose Zone J. 2007, 6, 868–878. [Google Scholar] [CrossRef]
- Zacharias, S.; Wessolek, G. Excluding Organic Matter Content from Pedotransfer Predictors of Soil Water Retention. Soil Sci. Soc. Am. J. 2007, 71, 43–50. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Dexter, A.R.; Czyz, E.A.; Richard, G.; Reszkowska, A. A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma 2008, 143, 243–253. [Google Scholar] [CrossRef]
- Wosten, J.H.M.; van Genuchten, M.T. Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Sci. Soc. Am. J. 1988, 52, 1762–1770. [Google Scholar] [CrossRef]
- Schaap, M.G.; Bouten, W. Modeling water retention curves of sandy soils using neural networks. Water Resour. Res. 1996, 32, 3033–3040. [Google Scholar] [CrossRef]
- Scheinost, A.C.; Sinowski, W.; Auerswald, K. Regionalization of soil water retention curves in a highly variable soilscape, I. Developing a new pedotransfer function. Geoderma 1997, 78, 129–143. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Bristow, K.I. Comparison of different approaches to the development of pedotransfer functions for water retention curves. Geoderma 1999, 93, 225–253. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Pachepsky, Y.A.; Rawls, W.J. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 2001, 251, 123–150. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic properties of porous media and their relation to drainage design. Trans. ASAE 1964, 7, 0026–0028. [Google Scholar]
- Campbell, G.S. A simple method for determining unsaturated hydraulic conductivity from moisture retention data. Soil Sci. 1974, 177, 311–314. [Google Scholar] [CrossRef]
- Wang, G.; Zhanga, Y.; Yu, N. Prediction of soil water retention and available water of sandy soils using pedotransfer functions. Procedia Eng. 2012, 37, 49–53. [Google Scholar] [CrossRef][Green Version]
- Pachepsky, Y.A.; Rawls, W.J. Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Sci. Soc. Am. J. 1999, 63, 1748–1757. [Google Scholar] [CrossRef]
- Haghverdi, A.; Öztürk, H.S.; Cornelis, W.M. Revisiting the pseudo continuous pedotransfer function concept: Impact of data quality and data mining method. Geoderma 2014, 226, 31–38. [Google Scholar] [CrossRef]
- Mukhlisin, M.; El-Shafie, A.; Taha, M.R. Regularized versus non-regularized neural network model for prediction of saturated soil-water content on weathered granite soil formation. Neural Comput. Appl. 2012, 21, 543–553. [Google Scholar] [CrossRef]
- Patil, N.G.; Pal, D.K.; Mandal, C.; Mandal, D.K. Soil water retention characteristics of vertisols and pedotransfer functions based on nearest neighbour and neural networks approaches to estimate AWC. J. Irrig. Drain. Eng. 2012, 138, 177–184. [Google Scholar] [CrossRef]
- Minasny, B.; Hartemink, A.E. Predicting soil properties in the tropics. Earth-Sci. Rev. 2011, 106, 52–62. [Google Scholar] [CrossRef]
- Patil, N.G.; Singh, S.K. Pedotransfer functions for estimating soil hydraulic properties: A review. Pedosphere 2016, 26, 417–430. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. 1966, 92, 61–90. [Google Scholar]
- Aiello, R.; Bagarello, V.; Barbagallo, S.; Consoli, S.; Di Prima, S.; Giordano, G.; Iovino, M. An assessment of the Beerkan method for determining the hydraulic properties of a sandy loam soil. Geoderma 2014, 235–236, 300–307. [Google Scholar] [CrossRef]
- Antinoro, C.; Bagarello, V.; Ferro, V.; Giordano, G.; Iovino, M. A simplified approach to estimate water retention for Sicilian soils by the Arya–Paris model. Geoderma 2014, 213, 226–234. [Google Scholar] [CrossRef]
- Bagarello, V.; Iovino, M. Testing the BEST procedure to estimate the soil water retention curve. Geoderma 2012, 187, 67–76. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size analysis1. In Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, (Methodsofsoilan1); American Society of Agronomy-Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Shirazi, M.A.; Boersma, L. A Unifying Quantitative Analysis of Soil Texture 1. Soil Sci. Soc. Am. J. 1984, 48, 142–147. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis Part 3—Chemical Methods, (Methodsofsoilan3); American Society of Agronomy-Soil Science Society of America: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Van Genuchten, M.V.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; Research Report n. EPA/600/2-91/065; U.S. Salinity Laboratory, USDA-ARS: Riverside, CA, USA, 1991; 93p.
- D’Emilio, A.; Mazzarella, R.; Porto, S.M.C.; Cascone, G. Neural networks for predicting greenhouse thermal regimes during soil solarization. Trans. ASABE 2012, 55, 1093–1103. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Panchal, G.; Ganatra, A.; Kosta, Y.P.; Panchal, D. Searching most efficient neural network architecture using Akaike’s information criterion (AIC). Int. J. Comput. Appl. 2010, 1, 41–44. [Google Scholar] [CrossRef]
- Chang, C.H.; Wu, S.J.; Hsu, C.T.; Shen, J.C.; Lien, H.C. An evaluation framework for identifying the optimal raingauge network based on spatiotemporal variation in quantitative precipitation estimation. Hydrol. Res. 2017, 48, 77–98. [Google Scholar] [CrossRef]
- Laio, F.; Di Baldassarre, G.; Montanari, A. Model selection techniques for the frequency analysis of hydrological extremes. Water Res. Res. 2009, 45, 1–11. [Google Scholar] [CrossRef]
- Rossel, R.V.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Sci. Soc. Am. J. 2002, 66, 352–361. [Google Scholar] [CrossRef]
- Jain, S.K.; Singh, V.P.; van Genuchten, M.T. Analysis of soil water retention data using artificial neural networks. J. Hydrol. Eng. 2004, 9, 415–420. [Google Scholar] [CrossRef]
- Merdun, H.; Cinar, O.; Meral, R.; Apan, M. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil Tillage Res. 2006, 90, 108–116. [Google Scholar] [CrossRef]
- Pachepsky, Y.; Schaap, M.G. Data mining and exploration techniques. Dev. Soil Sci. 2004, 30, 21–32. [Google Scholar]
- Haghverdi, A.; Cornelis, W.M.; Ghahraman, B. A pseudo-continuous neural network approach for developing water retention pedotransfer functions with limited data. J. Hydrol. 2012, 442, 46–54. [Google Scholar] [CrossRef]
Site | n | Clay (%) | Silt (%) | Sand (%) | dg (mm) | OC (g·kg−1) | ρb (Mg·m−3) | φ |
---|---|---|---|---|---|---|---|---|
Palermo | 3 | 18.0 (±1.7) | 28.6 (±2.5) | 53.4 (±3.5) | 0.10 (±0.02) | 3.4 (±1.19) | 1.1.2 (±0.04) | 0.58 (±0.01) |
Bulgherano | 32 | 16.4 (±3.8) | 27.1 (±3.9) | 56.5 (±4.1) | 0.13 (±0.03) | 2.1 (±0.52) | 1.25 (±0.10) | 0.53 (±0.04) |
Caccamo | 1 | 7.4 | 18.0 | 74.6 | 0.02 | 1.51 | 1.25 | 0.53 |
Castelvetrano | 5 | 35.3 (±7.9) | 24.0 (±4.6) | 40.7 (±4.0) | 0.04 (±0.02) | 2.0 (±0.50) | 1.31 (±0.07) | 0.51 (±0.03) |
Comiso | 1 | 28.2 | 46.5 | 25.3 | 0.03 | 2.8 | 1.09 | 0.59 |
Corleone | 6 | 41.2 (±19.1) | 32.4 (±2.5) | 26.4 (±21.1) | 0.04 (±0.06) | 2.2 (±0.67) | 1.07 (±0.17) | 0.60 (±0.06) |
Etna | 1 | 0.5 | 9.7 | 89.9 | 0.70 | 1.86 | 1.37 | 0.48 |
Dirillo | 85 | 20.6 (±11.1) | 33.6 (±15.9) | 45.7 (±25.7) | 0.15 (±0.17) | 1.1 (±0.73) | 1.40 (±0.16) | 0.47 (±0.06) |
Menfi | 82 | (±11.4) | (±10.1) | 47.0 (±18.4) | 0.12 (±0.10) | 1.5 (±0.21) | 1.26 (±0.14) | 0.52 (±0.05) |
Mineo | 2 | 21.8 | (±2.3) | 32.5 (±6.6) | 0.04 (±0.02) | 1.5 (±0.66) | 1.26 (±0.03) | 0.52 (±0.01) |
Monreale | 1 | 5.4 | 22.7 | 71.9 | 0.31 | 0.3 | 1.26 | 0.53 |
Palazzelli | 32 | 10.5 (±3.8) | (±5.8) | 69.7 (±7.6) | 0.26 (±0.09) | 1.2 (±0.27) | 1.25 (±0.08) | 0.53 (±0.03) |
Pettineo | 1 | 24.9 | 34.2 | 40.9 | 0.05 | 4.6 | 1.14 | 0.57 |
Pollina | 2 | 24.8 (±4.17) | (±8.9) | 33.8 (±13.1) | 0.04 (±0.03) | 3.6 (±0.18) | 1.15 (±0.02) | 0.57 (±0.01) |
Ramacca | 2 | 29.7 (±4.4) | (±2.7) | 35.5 (±7.1) | 0.04 (±0.01) | 0.7 (±0.46) | 1.32 (±0.00) | 0.50 (±0.00) |
Rapitalà | 2 | 28.3 (±11.7) | (±11.4) | 34.8 (±23.1) | 0.05 (±0.05) | 1.6 (±0.22) | 1.30 (±0.10) | 0.51 (±0.04) |
Resuttano | 6 | 51.1 (±17.5) | (±13.1) | 7.1 (±5.9) | 0.01 (±0.01) | 1.6 (±1.17) | 1.30 (±0.15) | 0.51 (±0.06) |
Santa Ninfa | 52 | 20.5 (±18.4) | (±16.0) | 21.6 (±9.9) | 0.04 (±0.02) | 3.4 (±1.38) | 1.13 (±0.09) | 0.57 (±0.03) |
San Michele | 40 | 46.7 (±6.6) | (±6.2) | 36.3 (±9.0) | 0.02 (±0.01) | 2.5 (±0.49) | 1.27 (±0.08) | 0.52 (±0.03) |
Sparacia | 2 | 17.2 (±7.8) | (±2.0) | 62.3 (±5.7) | 0.15 (±0.07) | 0.5 (±0.0) | 1.40 (±0.11) | 0.47 (±0.04) |
Ventimiglia | 1 | 36.3 | 29.8 | 33.9 | 0.03 | 1.3 | 1.25 | 0.53 |
All | 359 | 23.9 | 31.3 | 44.8 | 0.11 | 2 | 1.25 | 0.53 |
Network | Input Data 1 |
---|---|
ANN1 | Cl, Si, dg, φ |
ANN2 | Cl, Sa, ρb |
ANN3 | Cl, Sa, OC |
ANN4 | Cl, Sa, Si, OC |
ANN5 | Cl, Sa, OC, ρb |
ANNs | Performance | θr | θs | α | N |
---|---|---|---|---|---|
ANN1 | RMSE | 0.0679 | 0.0660 | 0.0973 | 0.2135 |
NRMSE | 0.2751 | 0.1135 | 0.0692 | 0.1277 | |
MAE | 0.0571 | 0.0523 | 0.0596 | 0.1607 | |
NMAE | 0.2314 | 0.0899 | 0.0424 | 0.0962 | |
Min AE | 0.0039 | 0.0030 | 0.0021 | 0.0012 | |
Max AE | 0.1710 | 0.1984 | 0.4797 | 0.7833 | |
r | 0.2762 | 0.6612 | 0.2926 | 0.6944 | |
ANN2 | RMSE | 0.0671 | 0.0677 | 0.0957 | 0.2113 |
NRMSE | 0.2718 | 0.1164 | 0.0681 | 0.1264 | |
MAE | 0.0571 | 0.0533 | 0.0582 | 0.1581 | |
NMAE | 0.2314 | 0.0917 | 0.0414 | 0.0946 | |
Min AE | 0.0047 | 0.0004 | 0.0007 | 0.0016 | |
Max AE | 0.1673 | 0.1953 | 0.4817 | 0.7828 | |
r | 0.2927 | 0.6402 | 0.2766 | 0.7003 | |
ANN3 | RMSE | 0.0650 | 0.0701 | 0.0967 | 0.2238 |
NRMSE | 0.2635 | 0.1206 | 0.0688 | 0.1339 | |
MAE | 0.0555 | 0.0562 | 0.0574 | 0.1634 | |
NMAE | 0.2248 | 0.0966 | 0.0408 | 0.0978 | |
Min AE | 0.0024 | 10−5 | 0.0015 | 0.0019 | |
Max AE | 0.1845 | 0.2339 | 0.4873 | 0.8500 | |
r | 0.3789 | 0.6109 | 0.1586 | 0.6574 | |
ANN4 | RMSE | 0.0610 | 0.0681 | 0.0972 | 0.2197 |
NRMSE | 0.2470 | 0.1172 | 0.0691 | 0.1315 | |
MAE | 0.0500 | 0.0554 | 0.0556 | 0.1560 | |
NMAE | 0.2025 | 0.0952 | 0.0396 | 0.0933 | |
Min AE | 0.0018 | 0.0011 | 0.0003 | 0.0029 | |
Max AE | 0.1764 | 0.2149 | 0.4908 | 0.8782 | |
r | 0.5004 | 0.6400 | 0.1673 | 0.6734 | |
ANN5 | RMSE | 0.0657 | 0.0641 | 0.1001 | 0.2120 |
NRMSE | 0.2663 | 0.1102 | 0.0712 | 0.1268 | |
MAE | 0.0552 | 0.0515 | 0.0611 | 0.1567 | |
NMAE | 0.2236 | 0.0885 | 0.0434 | 0.0937 | |
Min AE | 0.0013 | 0.0013 | 0.0003 | 0.0004 | |
Max AE | 0.1788 | 0.1856 | 0.4666 | 0.7842 | |
r | 0.3764 | 0.6887 | 0.2318 | 0.6992 |
Network | MAE | RMSE | r2 |
---|---|---|---|
ANN1 | 0.030 | 0.074 | 0.75 |
ANN2 | 0.032 | 0.076 | 0.74 |
ANN3 | 0.032 | 0.089 | 0.65 |
ANN4 | 0.026 | 0.069 | 0.79 |
ANN5 | 0.016 | 0.074 | 0.72 |
Network | vG Parameters | Water Retention Curve | ||
---|---|---|---|---|
RSS | AIC | RSS | AIC | |
ANN1 | 5.75 | −468.3 | 5.14 | −2887.8 |
ANN2 | 5.74 | −472.4 | 5.48 | −3095.5 |
ANN3 | 6.23 | −464.9 | 7.43 | −2811.6 |
ANN4 | 5.88 | −466.4 | 4.56 | −2999.4 |
ANN5 | 5.63 | −470.2 | 5.23 | −2871.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Emilio, A.; Aiello, R.; Consoli, S.; Vanella, D.; Iovino, M. Artificial Neural Networks for Predicting the Water Retention Curve of Sicilian Agricultural Soils. Water 2018, 10, 1431. https://doi.org/10.3390/w10101431
D’Emilio A, Aiello R, Consoli S, Vanella D, Iovino M. Artificial Neural Networks for Predicting the Water Retention Curve of Sicilian Agricultural Soils. Water. 2018; 10(10):1431. https://doi.org/10.3390/w10101431
Chicago/Turabian StyleD’Emilio, Alessandro, Rosa Aiello, Simona Consoli, Daniela Vanella, and Massimo Iovino. 2018. "Artificial Neural Networks for Predicting the Water Retention Curve of Sicilian Agricultural Soils" Water 10, no. 10: 1431. https://doi.org/10.3390/w10101431
APA StyleD’Emilio, A., Aiello, R., Consoli, S., Vanella, D., & Iovino, M. (2018). Artificial Neural Networks for Predicting the Water Retention Curve of Sicilian Agricultural Soils. Water, 10(10), 1431. https://doi.org/10.3390/w10101431