Myriophyllum aquaticum-Based Surface Flow Constructed Wetlands for Enhanced Eutrophic Nutrient Removal—A Case Study from Laboratory-Scale up to Pilot-Scale Constructed Wetland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setup of the LSCW
2.2. Determination of the Hydraulic Retention Time (HRT) of the LSCW
2.3. Modelling of the LSCW and Accuracy Test of Models
2.4. Design of the PSCW Enlarged from the LSCW
2.5. Setup and Operational Conditions of the PSCW
2.6. Modelling of the PSCW and Accuracy Testing of the Models
2.7. Preparation of Synthetic Wastewater for the LSCW and the PSCW
2.8. Water Sampling and Quality Analysis
2.9. Routine Maintenance of the LSCW and the PSCW
3. Data and Statistical Analyses
4. Results and Discussion
4.1. HRTs Affect the Pollutant Removal Efficiencies in the LSCW
4.2. Macrophytes Showed Excellent Nutrient Removal in the LSCW
4.3. COD and NH4+ Removal in the LSCW Complied with Models
4.4. The PSCW Designed from the LSCW
4.5. The PSCW Showed Enhanced Removal of NH4+ and TN
4.6. Removal of COD and Relationship Between COD and N Removal in the PSCW
4.7. The PSCW Showed Excellent TP Removal Capability and Potential
4.8. COD and NH4+ Removal in the PSCW Complied with Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Li-kun, Y.; Sen, P.; Xin-hua, Z.; Xia, L. Development of a two-dimensional eutrophication model in an urban lake (China) and the application of uncertainty analysis. Ecol. Model. 2017, 345, 63–74. [Google Scholar] [CrossRef]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Chloupek, O.; Hrstkova, P.; Schweigert, P. Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilisation over 75 years in the Czech Republic in comparison to some European countries. Field Crop Res. 2004, 85, 167–190. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Rast, W.; Thornton, J.A. Trends in eutrophication research and control. Hydrol. Process 1996, 10, 295–313. [Google Scholar] [CrossRef]
- Serrano, L.; Reina, M.; Quintana, X.D.; Romo, S.; Olmo, C.; Soria, J.M.; Blanco, S.; Fernandez-Alaez, C.; Fernandez-Alaez, M.; Caria, M.C.; et al. A new tool for the assessment of severe anthropogenic eutrophication in small shallow water bodies. Ecol. Indic. 2017, 76, 324–334. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.N.; Xiao, R.L.; Liu, F.; Zhou, J.; Li, H.F.; Wu, J.S. Effect of vegetation on nitrogen removal and ammonia volatilization from wetland microcosms. Ecol. Eng. 2016, 97, 363–369. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, Y.; Zhou, Q.; Vymazal, J. Effects of plant biomass on denitrifying genes in subsurface-flow constructed wetlands. Bioresour. Technol. 2014, 157, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.M.; Zhang, J.; Li, C.; Fan, J.L.; Zou, Y.N. Mass balance study on phosphorus removal in constructed wetland microcosms treating polluted river water. Clean-Soil Air Water 2013, 41, 844–850. [Google Scholar] [CrossRef]
- Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia 2011, 674, 133–156. [Google Scholar] [CrossRef]
- Wu, S.B.; Kuschk, P.; Brix, H.; Vymazal, J.; Dong, R.J. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Res. 2014, 57, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Yalcuk, A.; Ugurlu, A. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresour. Technol. 2009, 100, 2521–2526. [Google Scholar] [CrossRef] [PubMed]
- Badhe, N.; Saha, S.; Biswas, R.; Nandy, T. Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland. Bioresour. Technol. 2014, 169, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Harrington, C.; Scholz, M. Assessment of pre-digested piggery wastewater treatment operations with surface flow integrated constructed wetland systems. Bioresour. Technol. 2010, 101, 7713–7723. [Google Scholar] [CrossRef] [PubMed]
- Saeed, T.; Sun, G.Z. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.H.; Ouyang, Y.; Lou, Q.A.; Yang, F.L.; Chen, Y.; Zhu, W.L.; Luo, S.M. Removal of nutrients from wastewater with Canna indica L. under different vertical-flow constructed wetland conditions. Ecol. Eng. 2010, 36, 1083–1088. [Google Scholar]
- Meng, P.P.; Pei, H.Y.; Hu, W.R.; Shao, Y.Y.; Li, Z. How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresour. Technol. 2014, 157, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Koottatep, T.; Phong, V.H.N.; Chapagain, S.K.; Panuvatvanich, A.; Polprasert, C.; Ahn, K.H. Performance evaluation of selected aquatic plants and iron-rich media for removal of PPCPs from wastewater in constructed wetlands. Desalin. Water Treat. 2017, 91, 281–286. [Google Scholar] [CrossRef]
- Surrency, D. Evaluation of Aquatic Plants for Constructed Wetlands. Constructed Wetlands for Water Quality Improvement; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Xu, J.T.; Zhang, J.A.; Xie, H.J.; Li, C.; Bao, N.; Zhang, C.L.; Shi, Q.Q. Physiological responses of Phragmites australis to wastewater with different chemical oxygen demands. Ecol. Eng. 2010, 36, 1341–1347. [Google Scholar] [CrossRef]
- Ong, S.A.; Uchiyama, K.; Inadama, D.; Ishida, Y.; Yamagiwa, K. Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresour. Technol. 2010, 101, 7239–7244. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Xiao, K.; Zhou, W.B.; Zhu, D.W.; Zhou, Y.Y.; Yuan, Y.; Xiao, N.D.; Wan, X.Q.; Hua, Y.M.; Zhao, J.W. Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresour. Technol. 2017, 223, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.; Chisholm, R.; Sang, W.G.; Dong, M. Spatial risk assessment of alien invasive plants in China. Environ. Sci. Technol. 2013, 47, 7624–7632. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.Y.; Gao, J.Q.; Zhang, R.M.; Zhang, R.Q. Ammonia stress on nitrogen metabolism in tolerant aquatic plant-Myriophyllum aquaticum. Ecotox. Environ. Safe 2017, 143, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, S.N.; Wang, Y.; Li, Y.; Xiao, R.L.; Li, H.F.; He, Y.; Zhang, M.M.; Wang, D.; Li, X.; et al. Nitrogen removal and mass balance in newly-formed Myriophyllum aquaticum mesocosm during a single 28-day incubation with swine wastewater treatment. J. Environ. Manag. 2016, 166, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rueda, O.; Hallin, S.; Baneras, L. Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiol. Ecol. 2009, 67, 308–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.; Wang, Y.M.; Li, C.S.; Li, Y.C.; Zhou, J. The nitrogen removal performance and microbial communities in a two-stage deep sequencing constructed wetland for advanced treatment of secondary effluent. Bioresour. Technol. 2018, 248, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.Q.; Wang, H.; Chen, X.C.; Wang, R.Q.; Liu, J. Composition and distribution of microbial communities in natural river wetlands and corresponding constructed wetlands. Ecol. Eng. 2017, 98, 40–48. [Google Scholar] [CrossRef]
- Button, M.; Auvinen, H.; Van Koetsem, F.; Hosseinkhani, B.; Rousseau, D.; Weber, K.P.; Du Laing, G. Susceptibility of constructed wetland microbial communities to silver nanoparticles: A microcosm study. Ecol. Eng. 2016, 97, 476–485. [Google Scholar] [CrossRef]
- Du, L.; Chen, Q.R.; Liu, P.P.; Zhang, X.; Wang, H.H.; Zhou, Q.H.; Xu, D.; Wu, Z.B. Phosphorus removal performance and biological dephosphorization process in treating reclaimed water by Integrated Vertical-flow Constructed Wetlands (IVCWs). Bioresour. Technol. 2017, 243, 204–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibekwe, A.M.; Grieve, C.M.; Lyon, S.R. Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Appl. Environ. Microbiol. 2003, 69, 5060–5069. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, J.R.; Klessa, D.A.; Parry, D.L.; Buck, P.; Brown, N.L. Stimulation of microbial sulphate reduction in a constructed wetland: Microbiological and geochemical analysis. Water Res. 2004, 38, 1822–1830. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Zhang, Y.; Carvalho, P.N.; Zhang, L.; Button, M.; Arias, C.A.; Weber, K.P.; Brix, H. Microbial community metabolic function in constructed wetland mesocosms treating the pesticides imazalil and tebuconazole. Ecol. Eng. 2017, 98, 378–387. [Google Scholar] [CrossRef]
- Pollard, P.C. Bacterial activity in plant (Schoenoplectus validus) biofilms of constructed wetlands. Water Res. 2010, 44, 5939–5948. [Google Scholar] [CrossRef] [PubMed]
- Ishida, C.K.; Kelly, J.J.; Gray, K.A. Effects of variable hydroperiods and water level fluctuations on denitrification capacity, nitrate removal, and benthic-microbial community structure in constructed wetlands. Ecol. Eng. 2006, 28, 363–373. [Google Scholar] [CrossRef]
- Sun, H.S.; Liu, F.; Xu, S.J.; Wu, S.H.; Zhuang, G.Q.; Deng, Y.; Wu, J.S.; Zhuang, X.L. Myriophyllum aquaticum constructed wetland effectively removes nitrogen in swine wastewater. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.H.; Wang, Y.; Li, Z.; Wei, C.Z.; Zhao, J.C.; Sun, L.Q. Effect of a strengthened ecological floating bed on the purification of urban landscape water supplied with reclaimed water. Sci. Total Environ. 2018, 622, 1630–1639. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Sample, D.J. Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds. J. Environ. Manag. 2014, 137, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Ramprasad, C.; Smith, C.S.; Memon, F.A.; Philip, L. Removal of chemical and microbial contaminants from greywater using a novel constructed wetland: GROW. Ecol. Eng. 2017, 106, 55–65. [Google Scholar] [CrossRef]
- Luo, P.; Liu, F.; Liu, X.L.; Wu, X.; Yao, R.; Chen, L.; Li, X.; Xiao, R.L.; Wu, J.S. Phosphorus removal from lagoon-pretreated swine wastewater by pilot-scale surface flow constructed wetlands planted with Myriophyllum aquaticum. Sci. Total Environ. 2017, 576, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Z.; Wang, F.W.; Liu, W.; Tang, C.; Wu, C.X.; Wu, Y.H. Nutrient removal by up-scaling a hybrid floating treatment bed (HFTB) using plant and periphyton: From laboratory tank to polluted river. Bioresour. Technol. 2016, 207, 142–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Hu, Y.; Li, S.Q.; Peng, S.; Zhao, H.B. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement. Bioresour. Technol. 2016, 211, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.Z.; Saeed, T. Kinetic modelling of organic matter removal in 80 horizontal flow reed beds for domestic sewage treatment. Process Biochem. 2009, 44, 717–722. [Google Scholar] [CrossRef]
- Nguyen, X.C.; Chang, S.W.; Nguyen, T.L.; Ngo, H.H.; Kumar, G.; Banu, J.R.; Vu, M.C.; Le, H.S.; Nguyen, D.D. A hybrid constructed wetland for organic-material and nutrient removal from sewage: Process performance and multi-kinetic models. J. Environ. Manag. 2018, 222, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Saeed, T.; Sun, G.Z. The removal of nitrogen and organics in vertical flow wetland reactors: Predictive models. Bioresour. Technol. 2011, 102, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Toscano, A.; Langergraber, G.; Consoli, S.; Cirelli, G.L. Modelling pollutant removal in a pilot-scale two-stage subsurface flow constructed wetlands. Ecol. Eng. 2009, 35, 281–289. [Google Scholar] [CrossRef]
- Weerakoon, G.M.P.R.; Jinadasa, K.B.S.N.; Herath, G.B.B.; Mowjood, M.I.M.; Van Bruggen, J.J.A. Impact of the hydraulic loading rate on pollutants removal in tropical horizontal subsurface flow constructed wetlands. Ecol. Eng. 2013, 61, 154–160. [Google Scholar] [CrossRef]
- Huang, J.; Reneau, R.B.; Hagedorn, C. Nitrogen removal in constructed wetlands employed to treat domestic wastewater. Water Res. 2000, 34, 2582–2588. [Google Scholar] [CrossRef]
- Toet, S.; Van Logtestijn, R.S.P.; Kampf, R.; Schreijer, M.; Verhoeven, J.T.A. The effect of hydraulic retention time on the removal of pollutants from sewage treatment plant effluent in a surface-flow wetland system. Wetlands 2005, 25, 375–391. [Google Scholar] [CrossRef]
- Zhang, S.; Pang, S.; Wang, P.; Wang, C.; Guo, C.; Addo, F.G.; Li, Y. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate. Sci. Rep. 2016, 6, 36178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Zhang, S.N.; Luo, P.; Zhuang, X.L.; Chen, X.; Wu, J.S. Purification and reuse of non-point source wastewater via Myriophyllum-based integrative biotechnology: A review. Bioresour. Technol. 2018, 248, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Rehman, F.; Pervez, A.; Khattak, B.N.; Ahmad, R. Constructed wetlands: Perspectives of the oxygen released in the rhizosphere of macrophytes. Clean-Soil Air Water 2017, 45. [Google Scholar] [CrossRef]
- Klomjek, P.; Nitisoravut, S. Constructed treatment wetland: A study of eight plant species under saline conditions. Chemosphere 2005, 58, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Mburu, N.; Tebitendwa, S.M.; Rousseau, D.P.L.; Van Bruggen, J.J.A.; Lens, P.N.L. Performance evaluation of horizontal subsurface flow-constructed wetlands for the treatment of domestic wastewater in the tropics. J. Environ. Eng. 2013, 139, 358–367. [Google Scholar] [CrossRef]
- Song, H.L.; Li, X.N.; Lu, X.W.; Inamori, Y. Investigation of microcystin removal from eutrophic surface water by aquatic vegetable bed. Ecol. Eng. 2009, 35, 1589–1598. [Google Scholar] [CrossRef]
- Li, L.F.; Li, Y.H.; Biswas, D.K.; Nian, Y.G.; Jiang, G.M. Potential of constructed wetlands in treating the eutrophic water: Evidence from Taihu Lake of China. Bioresour.Technol. 2008, 99, 1656–1663. [Google Scholar] [CrossRef] [PubMed]
- Katsenovich, Y.P.; Hummel-Batista, A.; Ravinet, A.J.; Miller, J.F. Performance evaluation of constructed wetlands in a tropical region. Ecol. Eng. 2009, 35, 1529–1537. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Jia, W.L.; Xie, H.J.; Gu, R.R.; Li, C.; Gao, B.Y. Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater. Bioresour. Technol. 2009, 100, 2910–2917. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Song, X.S.; Wang, Y.H.; Yan, D.H. Effects of dissolved oxygen and influent COD/N ratios on nitrogen removal in horizontal subsurface flow constructed wetland. Ecol. Eng. 2012, 46, 107–111. [Google Scholar] [CrossRef]
- Zhu, H.; Yan, B.X.; Xu, Y.Y.; Guan, J.N.; Liu, S.Y. Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecol. Eng. 2014, 63, 58–63. [Google Scholar] [CrossRef]
- Fu, G.P.; Yu, T.Y.; Ning, K.L.; Guo, Z.P.; Wong, M.H. Effects of nitrogen removal microbes and partial nitrification-denitrification in the integrated vertical-flow constructed wetland. Ecol. Eng. 2016, 95, 83–89. [Google Scholar] [CrossRef]
- Turner, B.L.; Newman, S.; Newman, J.M. Organic phosphorus sequestration in subtropical treatment wetlands. Environ. Sci. Technol. 2006, 40, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.A.; Del Bubba, M.; Brix, H. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Res. 2001, 35, 1159–1168. [Google Scholar] [CrossRef] [Green Version]
- Westholm, L.J. Substrates for phosphorus removal–potential benefits for on-site wastewater treatment? Water Res. 2006, 40, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Caselles-Osorio, A.; Garcia, J. Performance of experimental horizontal subsurface flow constructed wetlands fed with dissolved or particulate organic matter. Water Res. 2006, 40, 3603–3611. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Gopal, B. Effect of hydraulic retention time on the treatment of secondary effluent in a subsurface flow constructed wetland. Ecol. Eng. 2010, 36, 1044–1051. [Google Scholar] [CrossRef]
Parameters | Numbers of Values | Minimum | Median | Maximum | Mean (M) or Geometric Mean (GM) | Standard Deviation (SD) or Geometric SD (GSD) |
---|---|---|---|---|---|---|
COD influent (mg/L) | 26 | 45.24 | 51.50 | 61.07 | 51.72 (M) | 3.73 (SD) |
COD effluent (mg/L) | 26 | 13.47 | 17.59 | 35.05 | 21.25 (M) | 7.62 (SD) |
NH4+ influent (mg/L) | 26 | 4.07 | 5.01 | 5.6 | 4.98 (M) | 0.39 (SD) |
NH4+ effluent (mg/L) | 26 | 0.49 | 1.26 | 4.40 | 1.72 (M) | 1.41 (SD) |
KCOD (g·m−2·d−1) | 26 | 4.179 | 6.7 | 8.797 | 6.62 (GM) | 1.25 (GSD) |
KNH4+ (g·m−2·d−1) | 26 | 0.104 | 0.285 | 0.36 | 0.227 (GM) | 1.56 (GSD) |
Parameters | Numbers of Values | Minimum | Median | Maximum | Mean (M) or Geometric Mean (GM) | Standard Deviation (SD) or Geometric SD (GSD) |
---|---|---|---|---|---|---|
COD influent (mg/L) | 50 | 44.75 | 56.74 | 73.24 | 56.97 (M) | 4.83 (SD) |
COD effluent (mg/L) | 50 | 10.42 | 27.6 | 39.59 | 26.99 (M) | 4.87 (SD) |
NH4+ influent (mg/L) | 50 | 7.08 | 8.92 | 10.75 | 8.94 (M) | 0.76 (SD) |
NH4+ effluent (mg/L) | 50 | 0.011 | 0.28 | 1.21 | 0.38 (M) | 0.28 (SD) |
KCOD (g·m−2·d−1) | 50 | 3.15 | 5.73 | 13.1 | 5.866 (GM) | 1.286 (GSD) |
KNH4+ (g·m−2·d−1) | 50 | 0.56 | 0.70 | 0.88 | 0.696 (GM) | 1.099 (GSD) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Xu, S.; Zhang, X.; Wang, R.; Ma, X.; Zhao, Z.; Zhuang, G.; Bai, Z.; Zhuang, X. Myriophyllum aquaticum-Based Surface Flow Constructed Wetlands for Enhanced Eutrophic Nutrient Removal—A Case Study from Laboratory-Scale up to Pilot-Scale Constructed Wetland. Water 2018, 10, 1391. https://doi.org/10.3390/w10101391
Feng S, Xu S, Zhang X, Wang R, Ma X, Zhao Z, Zhuang G, Bai Z, Zhuang X. Myriophyllum aquaticum-Based Surface Flow Constructed Wetlands for Enhanced Eutrophic Nutrient Removal—A Case Study from Laboratory-Scale up to Pilot-Scale Constructed Wetland. Water. 2018; 10(10):1391. https://doi.org/10.3390/w10101391
Chicago/Turabian StyleFeng, Shugeng, Shengjun Xu, Xupo Zhang, Rui Wang, Xiaona Ma, Zhirui Zhao, Guoqiang Zhuang, Zhihui Bai, and Xuliang Zhuang. 2018. "Myriophyllum aquaticum-Based Surface Flow Constructed Wetlands for Enhanced Eutrophic Nutrient Removal—A Case Study from Laboratory-Scale up to Pilot-Scale Constructed Wetland" Water 10, no. 10: 1391. https://doi.org/10.3390/w10101391
APA StyleFeng, S., Xu, S., Zhang, X., Wang, R., Ma, X., Zhao, Z., Zhuang, G., Bai, Z., & Zhuang, X. (2018). Myriophyllum aquaticum-Based Surface Flow Constructed Wetlands for Enhanced Eutrophic Nutrient Removal—A Case Study from Laboratory-Scale up to Pilot-Scale Constructed Wetland. Water, 10(10), 1391. https://doi.org/10.3390/w10101391