Effects of Crop Planting Structure Adjustment on Water Use Efficiency in the Irrigation Area of Hei River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Crop Growth Indicators
2.2.2. SWAT Model Input Parameters
2.2.3. Remote Sensing ET
2.2.4. Net Crop Irrigation System
2.2.5. Crop Cost and Price
3. Mathematical Model
3.1. SWAT Model
3.2. Spatial Distribution Model of Crop Planting Structure
3.3. Irrigation Efficiency
3.4. Evaluation Indicators of the Adjustment of Planting Structure
3.4.1. Water Saving Volume
3.4.2. Irrigation Water Productivity
3.4.3. Net Income Water Productivity
3.5. Statistical Indicators
4. Results and Discussions
4.1. SWAT Model Verification
4.2. Irrigation Efficiency Considering Drainage
4.3. Scenario Analysis
4.3.1. Water Saving Analysis
4.3.2. Irrigation Water Productivity Analysis
4.3.3. Net Water Productivity Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peng, L.; He, Y.; Mu, Z.; Chuan, L.; Fan, G. Evaluation of water resources allocation schemes of oasis areas based on water resource security assessment: A case study of Karamay city. South-to-North Water Transf. Water Sci. Technol. 2017, 15, 26–33. [Google Scholar]
- Jiang, S.; Huang, T.; Cao, X.; Jin, J.; Xu, H. Model for optimization of crop-planting structure adjustment in pond-irrigation area of Jianghuai Hilly Region. Water Resour. Hydropower Eng. 2018, 49, 217–223. [Google Scholar]
- Bos, M.G.; Burton, M.A.; Molden, D.J. Irrigation and Drainage Performance Assessment: Practical Guidelines; CABI: Wallingford, UK, 2005. [Google Scholar]
- Molden, D.; Burton, M.; Bos, M.G. Performance assessment, irrigation service delivery and poverty reduction: Benefits of improved system management. Irrig. Drain. 2007, 56, 307–320. [Google Scholar] [CrossRef]
- Huang, Y.; Qu, Z. Research on the Irrigation Water Use Efficiency in Different Spatial Scales—A case Study of Chaersen Irrigation District in Inner Mongolia. Water Sav. Irrig. 2017, 1, 45–49. [Google Scholar]
- Bos, M.G. Standards for irrigation efficiencies of ICID. J. Irrig. Drain. Div. 1979, 105, 37–43. [Google Scholar]
- Wang, X.; Wu, J.; Wang, B. Spatial variability of siol moisture in hilly and gully Loess Plateau. Chin. J. Ecol. 2015, 34, 2568–2575. [Google Scholar]
- Murtaza, G.; Ghafoor, A.; Owens, G.; Qadir, M.; Kahlon, U.Z. Environmental and Economic Benefits of Saline-Sodic Soil Reclamation Using Low-quality Water and Soil Amendments in Conjunction with a Rice–Wheat Cropping System. J. Agron. Crop. Sci. 2010, 195, 124–136. [Google Scholar] [CrossRef]
- Cao, X.; Ayitursun, S.; Jin, X.; Zhou, Y. Planting Structure Optimization in the Arid Area with Constrained Water Resources: A Case Study of Korla, Xinjiang. Resour. Sci. 2011, 34, 120–122. [Google Scholar]
- Agrell, P.J.; Stam, A.; Fischer, G.W. Interactive multiobjective agro-ecological land use planning: The Bungoma region in Kenya. Eur. J. Oper. Res. 2004, 158, 194–217. [Google Scholar] [CrossRef]
- Wang, Y.B.; Wu, P.T.; Zhao, X.N.; Li, J.L.; Lv, L.; Shao, H.B. The Optimization for Crop Planning and Some Advances for Water-Saving Crop Planning in the Semiarid Loess Plateau of China. J. Agron. Crop. Sci. 2010, 196, 55–65. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions; Center for Agricultural and Rural Development, Iowa State University: Heady Hall, AI, USA, 2007. [Google Scholar]
- Cui, Y.; Wu, D.; Wang, S.; Wen, J.; Wang, H. Simulation and analysis of irrigation water consumption in multi-source water irrigation districts in Southern China based on modified SWAT model. Trans. Chin. Soc. Agric. Eng. 2018, 34, 94–100. [Google Scholar]
- Zhang, B.; Xu, D.; Liu, Y.; Li, F.; Cai, J.; Du, L. Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in north China. Agric. For. Meteorol. 2016, 216, 1–12. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, P.; Li, L. Study on the Planting Industry Structure Adjustment and Its Impact on the Water Demand of Crops in Minqin Oasis. J. Nat. Resour. 2016, 5, 823–832. [Google Scholar]
- Liu, Y.; Pereira, L. Validation of FAO methods for estimating crop coefficients. Trans. Chin. Soc. Agric. Eng. 2000, 16, 26–30. [Google Scholar]
- Pereira, L.; Cai, L.; Hann, M. Farm water and soil management for improved water use in the North China plain. Irrig. Drain. 2003, 52, 299–317. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Y. A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain. Agric. Water Manag. 2010, 97, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Tolk, J.; Howell, T. Measured and simulated evapotranspiration of grain sorghum grown with full and limited irrigation in three high plains soils. Trans. ASAE 2001, 44, 1553–1558. [Google Scholar]
- Zhao, N.; Liu, Y.; Cai, J.; Paredes, P.; Rosa, R.D. Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component. Agric. Water Manag. 2013, 117, 93–105. [Google Scholar] [CrossRef]
- Qi-Feng, L.I.; Zhang, H.L.; Chen, F. Changes in spatial distribution and planting structure of major crops in northeast China. J. China Agric. Univ. 2008, 13, 74–76. [Google Scholar]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agric. Water Manag. 2012, 108, 39–51. [Google Scholar] [CrossRef]
- Pan, G.Y.; Zhou, L.Q.; Shi, Z. Estimating Rice LAI Based on Digital Camera and Image Processing. Key Eng. Mater. 2012, 500, 586–591. [Google Scholar] [CrossRef]
- Paredes, P.; Wei, Z.; Liu, Y.; Xu, D.; Xin, Y.; Zhang, B.; Pereira, L.S. Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain. Agric. Water Manag. 2015, 152, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Allen, P.M.; Bernhardt, G. A comprehensive surface-groundwater flow model. Hydrology 1993, 142, 47–69. [Google Scholar] [CrossRef]
- Droogers, P.; Immerzeel, W.W.; Terink, W. Modeling water resources trends in Middle East and North Africa towards 2050. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 3101–3114. [Google Scholar] [CrossRef]
- Paulmoiwo, J.; Yang, Y.; Yan, N.; Wu, B. Comparison of evapotranspiration estimated by ET-Watch with that derived from combined GRACE and measured precipitation data in Hai River Basin, North China. Int. Assoc. Sci. Hydrol. Bull. 2011, 56, 249–267. [Google Scholar]
- Choi, M.; Kustas, W.P.; Anderson, M.C.; Allen, R.G. An Intercomparison of three remote sensing-based EvapoTranspiration (ET) schemes for a corn and soybean production region during SMACEX. Agric. For. Meteorol. 2008, 149, 2082–2097. [Google Scholar] [CrossRef]
- Tian, H.; Lu, C.; Chen, G.; Xu, X.; Liu, M.; Ren, W.; Tao, B.; Sun, G.; Pan, S.; Liu, J. Climate and land use controls over terrestrial water use efficiency in monsoon Asia. Ecohydrology 2011, 4, 322–340. [Google Scholar] [CrossRef]
- Valipour, M. Increasing irrigiation efficiency by management strategies: Cutback and surge irrigiation. J. Agric. Biol. Sci. 2013, 8, 35–43. [Google Scholar]
- Usman, K. Effect of Phosphorus and Irrigation Levels on Yield, Water Productivity, Phosphorus Use Efficiency and Income of Lowland Rice in Northwest Pakistan. Rice Sci. 2013, 20, 61–72. [Google Scholar] [CrossRef]
- Jarosz, N.; Beziat, P.; Bonnefond, J.; Brunet, Y.; Calvet, J.; Ceschia, E.; Elbers, J.; Hutjes, R.; Traulle, O. Effect of land use on carbon dioxide, water vapour and energy exchange over terrestrial ecosystems in Southwestern France during the CERES campaign. Biogeosci. Discuss. 2009, 6, 2755–2784. [Google Scholar] [CrossRef]
- Konyar, K.; Howitt, R.E. The cost of the Kyoto Protocol to U.S. crop production: Measuring crop price, regional acreage, welfare, and input substitution effects. J. Agric. Resour. Econ. 2000, 25, 347–367. [Google Scholar]
- Hasan, B.; Higano, Y.; Yabar, H.; Devkota, M.; Lamers, J. Conservation agriculture practices in salt-affected, irrigated areas of Central Asia: Crop price and input cost variability effect on revenue risks. Sustain. Agric. Res. 2015, 4, 1–20. [Google Scholar] [CrossRef]
- Bouraoui, F.; Benabdallah, S.; Jrad, A.; Bidoglio, G. Application of the SWAT model on the Medjerda river basin (Tunisia). Phys. Chem. Earth Parts A/B/C 2005, 30, 497–507. [Google Scholar] [CrossRef]
- Jayakrishnan, R.; Srinivasan, R.; Santhi, C.; Arnold, J.G. Advances in the application of the SWAT model for water resources management. Hydrol. Process. 2005, 19, 1108–1120. [Google Scholar] [CrossRef]
- Reddy, M.J.; Kumar, D.N. Evolving strategies for crop planning and operation of irrigation reservoir system using multi-objective differential evolution. Irrig. Sci. 2008, 26, 177–190. [Google Scholar] [CrossRef]
- Wu, B.; Li, Q. Crop planting and type proportion method for crop acreage estimation of complex agricultural landscapes. Int. J. Appl. Earth Obs. Geoinf. 2012, 16, 101–112. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Wang, X.; Luo, W. Extraction of crop planting structure in seasons prone to waterlogging using Landsat8 OLI and MODIS data. Trans. Chin. Soc. Agric. Eng. 2014, 30, 165–173. [Google Scholar]
- Pereira, L.S. Higher performance through combined improvements in irrigation methods and scheduling: A discussion. Agric. Water Manag. 1999, 40, 153–169. [Google Scholar] [CrossRef]
- Solomon, K.H.; Burt, C.M. Irrigation sagacity: A measure of prudent water use. Irrig. Sci. 1999, 18, 135–140. [Google Scholar] [CrossRef]
- Wolters, W. Influences on the Efficiency of Irrigation Water Use. In Wageningen: ILRI; Publication/International Institute for Land Reclamation and Improvement 51; Publication/International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1992; p. 150. ISBN 9789070754297. [Google Scholar]
- Williams, J. The erosion-productivity impact calculator (EPIC) model: A. case history. Philos. Trans. R. Soc. Lond. Ser. B Boil. Sci. 1990, 329, 421–428. [Google Scholar] [CrossRef]
- Kang, S.; Davies, W.J.; Shan, L. Water Saving Agriculture and Sustainable Use of Water and Land Resources; Shaanxi Science & Technology Press: Shanxi, China, 2003; Volume 2. [Google Scholar]
- Yang, F.; Tang, D.S.; Yang, J. Apply the Compared Estimate Method to the Calculation of the Volume of Frugal Water in Water Saving Projects. Water Conserv. Sci. Technol. Econ. 2007, 13, 219–221. [Google Scholar]
- Kadigi, R.M.J.; Kashaigili, J.J.; Mdoe, N.S. The economics of irrigated paddy in Usangu Basin in Tanzania: Water utilization, productivity, income and livelihood implications. Phys. Chem. Earth Parts A/B/C 2004, 29, 1091–1100. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Fereres, E. On the conservative behavior of biomass water productivity. Irrig. Sci. 2007, 25, 189–207. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Liu, M.; Zhou, X.; Yu, S.; Dong, B. Effects of irrigation and planting patterns on radiation use efficiency and yield of winter wheat in North China. Agric. Water Manag. 2008, 95, 469–476. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Liu, M.; Zhang, C.; Su, G.; Lu, C.; Xu, X. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. For. Ecol. Manag. 2010, 259, 1311–1327. [Google Scholar] [CrossRef]
- Tisak, J. Determination of the Regression Coefficients and Their Associated Standard Errors in Hierarchical Regression Analysis. Multivar. Behav. Res. 1994, 29, 185. [Google Scholar] [CrossRef] [PubMed]
- Haie, N.; Keller, A.A. Effective Efficiency as a Tool for Sustainable Water Resources Management. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 961–968. [Google Scholar] [CrossRef]
- Luo, Y.; He, C.; Sophocleous, M.; Yin, Z.; Hong, R.; Ou, Z. Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigation district of the Yellow River Basin. J. Hydrol. 2008, 352, 139–156. [Google Scholar] [CrossRef]
- Vazquez-Amabile, G.; Engel, B. Use of SWAT to compute groundwater table depth and streamflow in the Muscatatuck River watershed. Trans. ASAE 2005, 48, 991–1003. [Google Scholar] [CrossRef]
- Kannan, N.; White, S.; Worrall, F.; Whelan, M. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000. J. Hydrol. 2007, 332, 456–466. [Google Scholar] [CrossRef]
- Chen, H. Analysis on Water Saving Potential and Water Saving Measures in Liuyuan Town. Water Resour. Hydropower 2017, 20, 110–112. [Google Scholar]
- Wang, L. Optimization of Agricultural Planting Structure under Water Resources Constraints; Northwest Agriculture and Forestry University: Yangling, China, 2017. [Google Scholar]
- Li, M. Methods and Models for Agricultural Water-Land Resources Multi-Scale Optimal Allocation Based on Uncertainty Analysis; China Agricultural University: Beijing, China, 2017. [Google Scholar]
- Zhang, F.; Li, C.; Wang, Z.; Wu, H. Modeling impacts of management alternatives on soil carbon storage of farmland in Northwest China. Biogeosci. Discuss. 2006, 3, 451–466. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Yu, L.; Di, X.U.; Cai, J.B.; Zhang, B.Z. Application and comparison of winter wheat canopy resistance estimation models based on the scaling-up of leaf stomatal conductance. Chin. Sci. Bull. 2013, 58, 2909–2916. [Google Scholar]
- Zhang, Y.; Zhao, W.; He, J.; Zhang, K. Energy exchange and evapotranspiration over irrigated seed maize agro-ecosystems in a desert-oasis region, northwest China. Agric. For. Meteorol. 2016, 223, 48–59. [Google Scholar] [CrossRef]
- Cao, X.; Wu, P.; Wang, Y. Spatiotemporal variation and correlation of different irrigation water productivity indicators. J. Agric. Mach. 2014, 45, 189–194. [Google Scholar]
- Tan, J. Analysis on the effectiveness of unified management of water resources in Tarim River Basin. Tech. Superv. Water Resour. 2015, 23, 18–20. [Google Scholar]
- Dong, H. Effects of Irrigation and Planting Methods on Water Consumption Characteristics and Yield of Wheat and Maize Two Crops; Shandong Agricultural University: Tai’an, China, 2011. [Google Scholar]
- Zheng, L. Changes of Oasis Agriculture Structure and Water Efficiency in Arid Regions–A Case Study of Zhangye Region; University of Chinese Academy of Sciences: Beijing, China, 2016. [Google Scholar]
Project | Alfalfa | Corn for Seed | Field Corn | Rape | Wheat | Soybean | Potato |
---|---|---|---|---|---|---|---|
Net irrigation quota (mm) | 250 | 360 | 260 | 220 | 270 | 220 | 220 |
ET (mm) | 400 | 545 | 501 | 472 | 398 | 456 | 349 |
Project | Alfalfa | Corn for Seed | Field Corn | Rape | Wheat | Soybean | Potato |
---|---|---|---|---|---|---|---|
Unit-Yield (kg/ha) | 10,032.15 | 9895.8 | 9037.35 | 3574.35 | 3464.55 | 2075.25 | 27,163.35 |
Unit-Price (yuan/kg) | 1.47 | 6 | 1.95 | 4 | 2.22 | 3.8 | 1.6 |
Net Income (yuan/ha) | 10,477.2 | 13,854.6 | 10,083.15 | 11,364.45 | 6653.55 | 8878.5 | 20,622 |
Year | Parameter | Regression Coefficient | R2 | RMSE | ARE | EF |
---|---|---|---|---|---|---|
2012 | LAI | 1.05 | 0.98 | 0.25 | 0.01 | 0.95 |
Shoot dry matter | 0.90 | 0.99 | 1.16 | 0.16 | 0.97 | |
ET | 0.94 | 0.78 | 18.15 | 16.92 | 0.76 | |
2013 | LAI | 0.84 | 0.94 | 0.53 | 0.04 | 0.89 |
Shoot dry matter | 0.95 | 0.92 | 1.60 | 0.01 | 0.90 | |
ET | 0.90 | 0.64 | 26.83 | 27.91 | 0.42 |
Year | Total Amount of Irrigation 104 m3 | Effective Precipitation 104 m3 | Evapotranspiration 104 m3 | Outflow 104 m3 |
---|---|---|---|---|
2012 | 10,139.09 | 1430.01 | 6547.89 | 1469.95 |
2013 | 10,145.15 | 1605.19 | 6520.72 | 1419.07 |
Target Value | Project | CORN | ALFA | SWHT | CSIL | CANA | SOYB | POTA |
---|---|---|---|---|---|---|---|---|
Water saving volume | planting areas (km2) | 8.32 | 6.93 | 106.79 | 8.32 | 0 | 8.32 | 0 |
planting proportion (%) | 6 | 5 | 77 | 6 | 0 | 6 | 0 | |
Irrigation water productivity | planting areas (km2) | 97.08 | 12.48 | 11.10 | 9.71 | 0 | 8.32 | 0 |
planting proportion (%) | 70 | 9 | 8 | 7 | 0 | 6 | 0 | |
Net water productivity | planting areas (km2) | 29.12 | 13.87 | 24.96 | 12.48 | 0 | 15.26 | 42.99 |
planting proportion (%) | 21 | 10 | 18 | 9 | 0 | 11 | 31 |
Correlation Coefficient | CORN | ALFA | SWHT | CSIL | CANA | SOBY | POTA |
---|---|---|---|---|---|---|---|
Water Saving Volume | 0.62 | 0.07 | −0.38 | 0.66 | −0.26 | −0.22 | −0.53 |
Irrigation Water Productivity | 0.82 | −0.12 | −0.28 | −0.12 | −0.02 | −0.30 | 0.16 |
Net Water Productivity | −0.15 | −0.25 | −0.52 | −0.47 | 0.5 | 0.23 | 0.94 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Wei, Z.; Zhang, B.; Han, C.; Song, J. Effects of Crop Planting Structure Adjustment on Water Use Efficiency in the Irrigation Area of Hei River Basin. Water 2018, 10, 1305. https://doi.org/10.3390/w10101305
Han X, Wei Z, Zhang B, Han C, Song J. Effects of Crop Planting Structure Adjustment on Water Use Efficiency in the Irrigation Area of Hei River Basin. Water. 2018; 10(10):1305. https://doi.org/10.3390/w10101305
Chicago/Turabian StyleHan, Xin, Zheng Wei, Baozhong Zhang, Congying Han, and Jianzheng Song. 2018. "Effects of Crop Planting Structure Adjustment on Water Use Efficiency in the Irrigation Area of Hei River Basin" Water 10, no. 10: 1305. https://doi.org/10.3390/w10101305
APA StyleHan, X., Wei, Z., Zhang, B., Han, C., & Song, J. (2018). Effects of Crop Planting Structure Adjustment on Water Use Efficiency in the Irrigation Area of Hei River Basin. Water, 10(10), 1305. https://doi.org/10.3390/w10101305