Assessing Impacts of Land Use Changes on the Hydrology of a Lowland Rainforest Catchment in Ghana, West Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. The ACRU Hydrological Model
2.3. Data Acquisition and Model Configuration
3. Results
3.1. Temporal Analysis of Impacts of Current and Future Land Use Changes
3.2. Spatial Analysis of the Hydrological Impacts of Land Use Changes
4. Discussion
4.1. Historical and Potential Future Land Use Change Impacts on Hydrology
4.2. Dealing with Uncertainties in Land Use Change Impact Assessments
4.3. Management of Bonsa and Similar Catchments in West Africa
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Global Forest Resources Assessment 2010: Main Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; p. 378. [Google Scholar]
- Schueler, V.; Kuemmerle, T.; Schroeder, H. Impacts of surface gold mining on land use systems in Western Ghana. Ambio 2011, 40, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Kusimi, J.M. Assessing land use and land cover change in the Wassa West District of Ghana using remote sensing. GeoJournal 2008, 71, 249–259. [Google Scholar] [CrossRef]
- Braimoh, A.K.; Vlek, P.L.G. Land-cover change trajectories in northern Ghana. Environ. Manag. 2005, 36, 356–373. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Engel, B.A.; Muthukrishnan, S.; Harbor, J. Gis based long term hydrologic impact evaluation for watershed urbanization. J. Am. Water Resour. Assoc. 2003, 39, 623–635. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Lane, P.N.J.; Best, A.E.; Hickel, K.; Zhang, L. The response of flow duration curves to afforestation. J. Hydrol. 2005, 310, 253–265. [Google Scholar] [CrossRef]
- Chu, H.-J.; Lin, Y.-P.; Huang, C.-W.; Hsu, C.-Y.; Chen, H.-Y. Modelling the hydrologic effects of dynamic land-use change using a distributed hydrologic model and a spatial land-use allocation model. Hydrol. Process. 2010, 24, 2538–2554. [Google Scholar] [CrossRef]
- Park, J.Y.; Park, M.J.; Joh, H.K.; Shin, H.J.; Kwon, H.J.; Srinivasan, R.; Kim, S.J. Assessment of MIROC3.2 hires climate and CLUE-s land use change impacts on watershed hydrology using SWAT. Trans. Asabe 2011, 54, 1713–1724. [Google Scholar] [CrossRef]
- Tong, S.T.Y.; Sun, Y.; Ranatunga, T.; He, J.; Yang, Y.J. Predicting plausible impacts of sets of climate and land use change scenarios on water resources. Appl. Geogr. 2012, 32, 477–489. [Google Scholar] [CrossRef]
- Gosling, S.N.; Taylor, R.G.; Arnell, N.W.; Todd, M.C. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrol. Earth Syst. Sci. 2011, 15, 279–294. [Google Scholar] [CrossRef]
- Moradkhani, H.; Baird, R.G.; Wherry, S.A. Assessment of climate change impact on floodplain and hydrologic ecotones. J. Hydrol. 2010, 395, 264–278. [Google Scholar] [CrossRef]
- Warburton, M.L.; Schulze, R.E.; Jewitt, G.P.W. Confirmation of acru model results for applications in land use and climate change studies. Hydrol. Earth Syst. Sci. 2010, 14, 2399–2414. [Google Scholar] [CrossRef]
- Li, K.Y.; Coe, M.T.; Ramankutty, N.; De Jong, R. Modeling the hydrological impact of land-use change in West Africa. J. Hydrol. 2007, 337, 258–268. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Zhang, X.; Zheng, F. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the loess plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Legesse, D.; Vallet-Coulomb, C.; Gasse, F. Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study South Central Ethiopia. J. Hydrol. 2003, 275, 67–85. [Google Scholar] [CrossRef]
- Mahe, G.; Paturel, J.E.; Servat, E.; Conway, D.; Dezetter, A. The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso. J. Hydrol. 2005, 300, 33–43. [Google Scholar] [CrossRef]
- Seguis, L.; Cappelaere, B.; Milesi, G.; Peugeot, C.; Massuel, S.; Favreau, G. Simulated impacts of climate change and land-clearing on runoff from a small sahelian catchment. Hydrol. Process. 2004, 18, 3401–3413. [Google Scholar] [CrossRef]
- Cornelissen, T.; Diekkrueger, B.; Giertz, S. A comparison of hydrological models for assessing the impact of land use and climate change on discharge in a tropical catchment. J. Hydrol. 2013, 498, 221–236. [Google Scholar] [CrossRef]
- Bossa, A.Y.; Diekkrueger, B.; Giertz, S.; Steup, G.; Sintondji, L.O.; Agbossou, E.K.; Hiepe, C. Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa). Agric. Water Manag. 2012, 115, 20–37. [Google Scholar] [CrossRef]
- Warburton, M.L.; Schulze, R.E.; Jewitt, G.P.W. Hydrological impacts of land use change in three diverse South African catchments. J. Hydrol. 2012, 414–415, 118–135. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Savenije, H.H.G.; Bloeschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U.; et al. A decade of Predictions in Ungauged Basins (PUB)—A review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Giertz, S.; Diekkruger, B. Analysis of the hydrological processes in a small headwater catchment in Benin (West Africa). Phys. Chem. Earth 2003, 28, 1333–1341. [Google Scholar] [CrossRef]
- Giertz, S.; Junge, B.; Diekkrüger, B. Assessing the effects of land use change on soil physical properties and hydrological processes in the sub-humid tropical environment of West Africa. Phys. Chem. Earth Parts A B C 2005, 30, 485–496. [Google Scholar] [CrossRef]
- Van de Giesen, N.; Stomph, T.-J.; Ajayi, A.E.; Bagayoko, F. Scale effects in hortonian surface runoff on agricultural slopes in West Africa: Field data and models. Agric. Ecosyst. Environ. 2011, 142, 95–101. [Google Scholar] [CrossRef]
- Leblanc, M.J.; Favreau, G.; Massuel, S.; Tweed, S.O.; Loireau, M.; Cappelaere, B. Land clearance and hydrological change in the Sahel: SW Niger. Glob. Planet. Chang. 2008, 61, 135–150. [Google Scholar] [CrossRef]
- Valentin, C.; Rajot, J.L.; Mitja, D. Responses of soil crusting, runoff and erosion to fallowing in the sub-humid and semi-arid regions of West Africa. Agric. Ecosyst. Environ. 2004, 104, 287–302. [Google Scholar] [CrossRef]
- Aduah, M.S.; Warburton, M.L.; Jewitt, G. Analysis of land cover changes in the Bonsa Catchment, Ankobra basin, Ghana. Appl. Ecol. Environ. Res. 2015, 13, 935–955. [Google Scholar] [CrossRef]
- Bossa, A.Y.; Diekkrueger, B.; Agbossou, E.K. Scenario-based impacts of land use and climate change on land and water degradation from the Meso to Regional Scale. Water 2014, 6, 3152–3181. [Google Scholar] [CrossRef]
- Boulain, N.; Cappelaere, B.; Séguis, L.; Favreau, G.; Gignoux, J. Water balance and vegetation change in the Sahel: A case study at the watershed scale with an eco-hydrological model. J. Arid Environ. 2009, 73, 1125–1135. [Google Scholar] [CrossRef]
- Klocking, B.; Haberlandt, U. Impact of land use changes on water dynamics—A case study in temperate meso and macroscale river basins. Phys. Chem. Earth 2002, 27, 619–629. [Google Scholar] [CrossRef]
- Akabzaa, T.M.; Jamieson, H.E.; Jorgenson, N.; Nyame, K. The combined impact of mine drainage in the Ankobra River Basin, SW Ghana. Mine Water Environ. 2009, 28, 50–64. [Google Scholar] [CrossRef]
- Armah, F.A.; Luginaah, I.; Ason, B. Water quality index in the Tarkwa gold mining area in Ghana. J. Transdiscipl. Environ. Stud. (TES) 2012, 11, 1–15. [Google Scholar]
- Kortatsi, B.K. Acidifcation of groundwater and its implication on rural water supply in the Ankobra basin, Ghana. West Afr. J. Appl. Ecol. 2003, 4, 35–47. [Google Scholar]
- Bansah, K.J.; Amegbey, N. Ambient particulate matter monitoring—A case study at Tarkwa. Res. J. Environ. Earth Sci. 2012, 4, 419–423. [Google Scholar]
- Aduah, M.S.; Toucher, M.L.; Jewitt, G.P.W. Estimating potential future land use in the bonsa catchment, Ghana, West Africa. S. Afr. J. Geomat. under review.
- Aduah, M.S.; Jewitt, G.P.W.; Toucher, M.L.W. Assessing suitability of the ACRU hydrological model in a rainforest catchment in Ghana, West Africa. Water Sci. 2017, accepted, in press. [Google Scholar] [CrossRef]
- Schulze, R.E. Hydrology and Agrohydrology: A Text to Accompany the ACRU 3.00 Agrohydrological Modelling System; Report TT69/95; Water Research Commission: Pretoria, South Africa, 1995. [Google Scholar]
- Schulze, R.E. Modelling hydrological responses to land use and climate change: A Southern African perspective. Ambio 2000, 29, 12–22. [Google Scholar] [CrossRef]
- Ghana Statistical Service. 2010 Population & Housing Census, National Analytical Report; Ghana Statistical Service: Accra, Ghana, 2013; p. 430.
- Jackson, B.; Nicholson, S.E.; Klotter, D. Mesoscale convective systems over Western Equatorial Africa and their relationship to large-scale circulation. Mon. Weather Rev. 2009, 137, 1272–1294. [Google Scholar] [CrossRef]
- Yidana, S.M.; Ophori, D.; Banoeng-Yakubo, B. Irrigation water resource management for sustainable agriculture—The Ankobra basin, Ghana. J. Irrig. Drain. Eng. ASCE 2007, 133, 609–615. [Google Scholar] [CrossRef]
- Forbes, K.A.; Kienzle, S.W.; Coburn, C.A.; Byrne, J.M.; Rasmussen, J. Simulating the hydrological response to predicted climate change on a watershed in southern Alberta, Canada. Clim. Chang. 2011, 105, 555–576. [Google Scholar] [CrossRef]
- Ghile, Y.B. An Adaptation of the SCS-ACRU Hydrograph Generating Technique for Application in Eritrea. Master’s Thesis, University of Natal, Durban, South Africa, 2004. [Google Scholar]
- Dwomo, O.; Dedzoe, C.D. Oxisol (ferralsol) development in two agro-ecological zones of ghana: A preliminary evaluation of some profiles. J. Sci. Technol. Kwame Nkrumah Univ. Sci. Technol. (KNUST) 2010, 30, 11–28. [Google Scholar] [CrossRef]
- Hargreaves, G.; Hargreaves, G.; Riley, J. Agricultural benefits for Senegal River Basin. J. Irrig. Drain. Eng. 1985, 111, 113–124. [Google Scholar] [CrossRef]
- Verburg, P.; Veldkamp, A. Projecting land use transitions at forest fringes in the philippines at two spatial scales. Landsc. Ecol. 2004, 19, 77–98. [Google Scholar] [CrossRef]
- Legesse, D.; Abiye, T.A.; Vallet-Coulomb, C.; Abate, H. Stream flow sensitivity to climate and land cover changes: Meki River, Ethiopia. Hydrol. Earth Syst. Sci. 2010, 14, 2277–2287. [Google Scholar] [CrossRef] [Green Version]
- Breuer, L.; Huisman, J.A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.G.; Gräff, T.; Hubrechts, L.; Jakeman, A.J.; et al. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use. Adv. Water Resour. 2009, 32, 129–146. [Google Scholar] [CrossRef]
- Wi, S.; Yang, Y.C.E.; Steinschneider, S.; Khalil, A.; Brown, C.M. Calibration approaches for distributed hydrologic models in poorly gaged basins: Implication for streamflow projections under climate change. Hydrol. Earth Syst. Sci. 2015, 19, 857–876. [Google Scholar] [CrossRef]
- Aduah, M.S. Impacts of Global Changes on a Lowland Rainforest Region of West Africa; University of KwaZulu-Natal: Pietermaritzburg, South Africa, 2016. [Google Scholar]
- Dale, V.H. The relationship between land-use change and climate change. Ecol. Appl. 1997, 7, 753–769. [Google Scholar] [CrossRef]
- D’Orgeval, T.; Polcher, J. Impacts of precipitation events and land-use changes on West African river discharges during the years 1951–2000. Clim. Dyn. 2008, 31, 249–262. [Google Scholar] [CrossRef]
- Homa, E.S.; Brown, C.; McGarigal, K.; Compton, B.W.; Jackson, S.D. Estimating hydrologic alteration from basin characteristics in massachusetts. J. Hydrol. 2013, 503, 196–208. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Wigington, R.; Braun, D.P. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef]
Scenario/Time Slice | Land Cover (km2) | Total | |||||
---|---|---|---|---|---|---|---|
Secondary Forest | Water | Evergreen Forest | Settlements | Shrubs/Farms | Mining Areas | ||
Baseline | 457.3 (30.8) | 0.2 (0.1) | 916.5 (61.8) | 12.4 (0.8) | 90.0 (6.1) | 5.9 (0.4) | 1482.3 |
Current | 280.3 (18.9) | 1.4 (0.1) | 754.6 (50.9) | 22.4 (1.5) | 399.4 (26.9) | 24.2 (1.6) | 1482.3 |
BAU: 2030 | 215.5 (14.5) | 1.4 (0.1) | 728.1 (49.1) | 63.7 (4.3) | 425.3 (28.7) | 48.3 (3.3) | 1482.2 |
BAU: 2070 | 171.0 (11.5) | 1.4 (0.1) | 683.6 (46.1) | 91.3 (6.2) | 482.1 (32.5) | 52.8 (3.6) | 1482.2 |
EG: 2030 | 283.9 (19.2) | 1.4 (0.1) | 733.6 (49.5) | 68.8 (4.6) | 340.1 (22.9) | 54.3 (3.7) | 1482.1 |
EG: 2070 | 294.7 (19.9) | 1.4 (0.1) | 689.4 (46.5) | 95.7 (6.5) | 335.0 (22.6) | 66.0 (4.5) | 1482.2 |
EGR: 2030 | 303.8 (20.5) | 1.4 (0.1) | 716.0 (48.3) | 66.6 (4.5) | 340.2 (22.9) | 54.3 (3.7) | 1482.2 |
EGR: 2070 | 350.1 (23.6) | 1.4 (0.1) | 667.7 (45.0) | 100.6 (6.8) | 295.4 (19.9) | 67.2 (4.5) | 1482.2 |
Scenario | Annual (%) | Dry Season (%) | Major Peak Season (%) | Minor Peak Season (%) | |
---|---|---|---|---|---|
2011 | 23.3 | 36.9 | 21.0 | 23.9 | |
BAU | |||||
2030 | 32.1 | 48.0 | 30.1 | 33.1 | |
2070 | 39.0 | 57.9 | 36.8 | 40.2 | |
EG | |||||
2030 | 27.9 | 40.7 | 26.7 | 28.9 | |
2070 | 32.2 | 46.1 | 31.3 | 33.4 | |
EGR | |||||
2030 | 28.1 | 41.2 | 26.8 | 28.9 | |
2070 | 31.2 | 44.0 | 30.5 | 32.3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aduah, M.S.; Jewitt, G.P.W.; Toucher, M.L.W. Assessing Impacts of Land Use Changes on the Hydrology of a Lowland Rainforest Catchment in Ghana, West Africa. Water 2018, 10, 9. https://doi.org/10.3390/w10010009
Aduah MS, Jewitt GPW, Toucher MLW. Assessing Impacts of Land Use Changes on the Hydrology of a Lowland Rainforest Catchment in Ghana, West Africa. Water. 2018; 10(1):9. https://doi.org/10.3390/w10010009
Chicago/Turabian StyleAduah, Michael S., Graham P. W. Jewitt, and Michele L. W. Toucher. 2018. "Assessing Impacts of Land Use Changes on the Hydrology of a Lowland Rainforest Catchment in Ghana, West Africa" Water 10, no. 1: 9. https://doi.org/10.3390/w10010009
APA StyleAduah, M. S., Jewitt, G. P. W., & Toucher, M. L. W. (2018). Assessing Impacts of Land Use Changes on the Hydrology of a Lowland Rainforest Catchment in Ghana, West Africa. Water, 10(1), 9. https://doi.org/10.3390/w10010009