Improvement of Hydroclimatic Projections over Southeast Spain by Applying a Novel RCM Ensemble Approach
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Method
3.1. Building PDF Ensemble
3.2. Hydrological Model and Its Calibration and Validation
Assessment of Potential Evapotranspiration
4. Results
4.1. RCM Ensembles
4.2. Trends for Meteorological and Hydrological Variables for 2021–2050 Horizon
5. Discussion and Conclusions
- A new methodology for reducing the uncertainties involved in the modeling chain, from the RCMs to hydrological models, is presented.
- The seasonal and annual variability of climate variables considered in the RCM ensembles are well captured by the proposed novel approach.
- Taking into account the built RCM ensembles of rainfall and PET, different trends in runoff are detected depending on the comparison period.
- Therefore, the hydroclimatic trends are very sensitive to small changes in the climate drivers and the selection of the baseline period.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Estrela, T.; Pérez-Martin, M.A.; Vargas, E. Impacts of climate change on water resources in Spain. Hydrol. Sci. J. 2012, 57, 1154–1167. [Google Scholar] [CrossRef]
- Ramos, M.C.; Balasch, J.C.; Martínez-Casasnovas, J.A. Seasonal temperature and precipitation variability during the last 60 years in a Mediterranean climate area of Northeastern Spain: A multivariate analysis. Theor. Appl. Climatol. 2012, 110, 35–53. [Google Scholar] [CrossRef]
- Milano, M.; Ruelland, D.; Dezetter, A.; Fabre, J.; Ardoin-Bardin, S.; Servat, E. Modeling the current and future capacity of water resources to meet water demands in the Ebro basin. J. Hydrol. 2013, 500, 114–126. [Google Scholar] [CrossRef]
- Hagemann, S.; Chen, C.; Clark, D.B.; Folwell, S.; Gosling, S.N.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.; Voss, F.; et al. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dyn. 2013, 4, 129–144. [Google Scholar] [CrossRef]
- Milliman, J.D.; Farnsworth, K.L.; Jones, P.D.; Xu, K.H.; Smith, L.C. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Glob. Planet. Chang. 2008, 62, 187–194. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Zhang, X.; Yang, T.; Duan, Q. Detecting the quantitative hydrological response to changes in climate and human activities. Sci. Total Environ. 2017, 586, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Nakićenović, N., Swart, R., Eds.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Giorgi, F. Uncertainties in climate change projections, from the global to the regional scale. EPJ Web Conf. 2010, 9, 115–129. [Google Scholar] [CrossRef]
- Xu, C.H.; Xu, Y. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmos. Ocean. Sci. Lett. 2012, 5, 527–533. [Google Scholar]
- Murphy, J.M.; Booth, B.B.B.; Collins, M.; Harris, G.R.; Sexton, D.M.H.; Webb, M.J. A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Phil. Trans. R. Soc. A 2007, 365, 1993–2028. [Google Scholar] [CrossRef] [PubMed]
- Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Phil. Trans. R. Soc. A 2007, 365, 2053–2075. [Google Scholar] [CrossRef] [PubMed]
- Diallo, I.; Sylla, M.B.; Giorgi, F.; Gaye, A.T.; Camara, M. Multimodel GCM-RCM Ensemble-Based Projections of Temperature and Precipitation over West Africa for the Early 21st Century. Int. J. Geophys. 2012, 2012, 1–19. [Google Scholar] [CrossRef]
- Murphy, J.M.; Sexton, D.M.H.; Barnett, D.N.; Jones, G.S.; Webb, M.J.; Collins, M.; Stainforth, D.A. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 2004, 430, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Wigley, T.M.L.; Raper, C.B. Interpretation of high projections for global-mean warming. Science 2001, 293, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, F.; Mearns, L.O. Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the ‘‘reliability ensemble averaging’’ (REA) method. J. Clim. 2002, 15, 1141–1158. [Google Scholar] [CrossRef]
- Giorgi, F.; Mearns, L.O. Probability of regional climate change based on reliability ensemble averaging (REA) method. Geophys. Res. Lett. 2003, 30, 311–314. [Google Scholar] [CrossRef]
- Dettinger, M. From climate-change spaghetti to climate-change distributions for 21st century California. San Franc. Estuary Watershed Sci. 2005, 3, 4. [Google Scholar]
- Tebaldi, C.; Smith, R.L.; Nychka, D.; Mearns, L.O. Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Clim. 2005, 18, 1524–1540. [Google Scholar] [CrossRef]
- Sánchez, E.; Romera, R.; Gaertner, M.A.; Gallardo, C.; Castro, M. A weighting proposal for an ensemble of regional climate models over Europe driven by 1961–2000 ERA40 based on monthly precipitation probability density functions. Atmos. Sci. Lett. 2009, 10, 241–248. [Google Scholar] [CrossRef]
- Duan, Q.; Phillips, T.J. Bayesian estimation of local signal and noise in multimodel simulations of climate change. J. Geophys. Res. 2010, 115, D18123. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, X.; Giorgi, F. Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections. Clim. Res. 2010, 41, 61–81. [Google Scholar] [CrossRef]
- Yang, T.; Tao, Y.; Li, J.; Zhu, Q.; Su, L.; He, X.; Zhang, X. Multi-criterion model ensemble of CMIP5 surface air temperature over China. Theor. Appl. Climatol. 2017, 6, 1–16. [Google Scholar] [CrossRef]
- Olmos Giménez, P.; García Galiano, S.G.; Giraldo-Osorio, J.D. Identifying a robust method to build RCMs ensemble as climate forcing for hydrological impact models. Atmos. Res. 2016, 174, 31–40. [Google Scholar] [CrossRef]
- Frei, C.; Christensen, J.H.; Déqué, M.; Jacob, D.; Jones, R.G.; Vidale, P.L. Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Karambiri, H.; García Galiano, S.G.; Giraldo, J.D.; Yacouba, H.; Ibrahim, B.; Barbier, B.; Polcher, J. Assessing the impact of climate variability and climate change on runoff in West Africa: The case of Senegal and Nakambe River basins. Atmos. Sci. Lett. 2011, 12, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Thodsen, H. The influence of climate change on stream flow in Danish rivers. J. Hydrol. 2007, 333, 226–238. [Google Scholar] [CrossRef]
- Vezzoli, R.; Del Longo, M.; Mercogliano, P.; Montesarchio, M.; Pecora, S.; Tonelli, F.; Zollo, A.L. Hydrological simulations driven by RCM climate scenarios at basin scale in the Po River, Italy. In Proceedings of the International Association of Hydrological Sciences, Bologna, Italy, 4–6 June 2014. [Google Scholar] [CrossRef]
- Mbaye, M.L.; Hagemann, S.; Haensler, A.; Stacke, T.; Gaye, A.T.; Afouda, A. Assessment of Climate Change Impact on Water Resources in the Upper Senegal Basin (West Africa). Am. J. Clim. Chang. 2015, 4, 77–93. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Jha, M.K. Hydrological response due to projected climate variability in Haw River watershed, North Carolina, USA. Hydrol. Sci. J. 2016, 61, 495–506. [Google Scholar] [CrossRef]
- Christensen, N.S.; Lettenmaier, D.P. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrol. Earth Syst. Sci. 2007, 11, 1417–1434. [Google Scholar] [CrossRef]
- Singh, H.; Sankarasubramanian, A. Systematic uncertainty reduction strategies for developing streamflow forecasts utilizing multiple climate models and hydrologic models. Water Resour. Res. 2014, 50, 1288–1307. [Google Scholar] [CrossRef]
- Sun, S.L.; Chen, H.S.; Ju, W.M.; Hua, W.; Yu, M.; Yin, Y. Assessing the future hydrological cycle in the Xinjiang Basin, China, using a multi-model ensemble and SWAT model. Int. J. Climatol. 2014, 34, 2972–2987. [Google Scholar] [CrossRef]
- Najafi, M.R.; Moradkhani, H. Multi-model ensemble analysis of runoff extremes for climate change impact assessments. J. Hydrol. 2015, 525, 352–361. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Edwards, D.R.; Yu, Y.; Hamidisepehr, A. An Assessment of Climate Change Impacts on Future Water Availability and Droughts in the Kentucky River Basin. Environ. Process. 2017, 4, 477–507. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Frías, M.D.; Herrera, S.; Cofiño, A.S.; Gutiérrez, J.M. Assessing the Skill of Precipitation and Temperature Seasonal Forecasts in Spain: Windows of Opportunity Related to ENSO Events. J. Clim. 2010, 23, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Fonseca, B.; Rodríguez-Puebla, C. Teleconexiones climáticas en el entorno de la Península Ibérica. Predictabilidad y cambios esperados. In Clima en España: Pasado, Presente y Future; Pérez, F.F., Boscolo, R., Eds.; Ministerio de Ciencia e Innovación: Madrid, España, 2010; pp. 53–68. Available online: http://digital.csic.es/handle/10261/23600 (accessed on 5 January 2018).
- Herrera, S.; Gutiérrez, J.M.; Ancell, R.; Pons, M.R.; Frías, M.D.; Fernández, J. Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int. J. Climatol. 2012, 32, 74–85. [Google Scholar] [CrossRef] [Green Version]
- SIAM (Sistema de Información Agrario de Murcia). IMIDA, Región de Murcia. Available online: http://siam.imida.es/apex/f?p=101:1:689155068600146 (accessed on 20 September 2014).
- SIAR (Servicio Integral de Asesoramiento al regante de Castilla la Mancha). Available online: http://crea.uclm.es/siar/datmeteo/ (accessed on 20 September 2014).
- IVIA (Instituto Valenciano de Investigaciones Agrarias). Available online: http://www.ivia.gva.es/ (accessed on 23 September 2014).
- Christensen, J.H.; Rummukainen, M.; Lenderink, G. Formulation of Very High-Resolution Regional Climate Model Ensembles for Europe. ENSEMBLES: Climate Change and Its Impacts at Seasonal, Decadal and Centennial Timescales: Summary of Research and Results from the ENSEMBLES Project; Van der Linden, P., Mitchell, J.F.B., Eds.; Met Office Hadley Centre: London, UK, 2009; pp. 47–58.
- Zittis, G.; Hadjinicolaou, P.; Fnais, M.; Lelieveld, J. Projected changes in heat wave characteristics in the eastern Mediterranean and the Middle East. Reg. Environ. Chang. 2016, 16, 1863–1876. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Giraldo Osorio, J.D.; García Galiano, S.G. Assessing uncertainties in the building of ensemble RCMs over Spain based on dry spell lengths probability density functions. Clim. Dyn. 2013, 40, 1271–1290. [Google Scholar] [CrossRef]
- Torres, R.R.; Marengo, J.A. Uncertainty assessments of climate change projections over South America. Theor. Appl. Climatol. 2013, 112, 253–272. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Projected changes in temperature and precipitation in ten river basins over China in 21st century. Int. J. Climatol. 2015, 35, 1125–1141. [Google Scholar] [CrossRef]
- García Galiano, S.; Olmos Giménez, P.; Martínez Pérez, J.A.; Giraldo Osorio, J.D. Improving evaluation of climate change impacts on the water cycle by remote sensing ET-retrieval. In Proceedings of the International Association of Hydrological Sciences, Guangzhou, China, 24–27 August 2014; Volume 368, pp. 239–244. [Google Scholar] [CrossRef]
- Gibbons, J.D.; Chakraborti, S. Nonparametric Statistical Inference, 4th ed.; Marcel Dekker: New York, NY, USA, 2003; ISBN 9780824740528. [Google Scholar]
- Yao, X.; Fu, B.; Lü, Y.; Sun, F.; Wang, S.; Liu, M. Comparison of Four Spatial Interpolation Methods for Estimating Soil Moisture in a Complex Terrain Catchment. PLoS ONE 2013, 8, e54660. [Google Scholar] [CrossRef] [PubMed]
- Témez, J.R. Modelo Matemático de Trasformación “Precipitación-Escorrentía”; Asociación de Investigación Industrial Eléctrica (ASINEL): Madrid, España, 1977. [Google Scholar]
- CEDEX (Centro de Estudios y Experimentación de Obras Públicas). Estudio de los Impactos del Cambio Climático en los Recursos Hídricos y las Masas de Agua; CEDEX (Centro de Estudios y Experimentación de Obras Públicas), Ministerio de Agricultura, Alimentación y Medio Ambiente, Centro de Estudios Hidrográficos: Madrid, España, 2012.
- Estrela, T.; Cabezas, F.; Estrada, F. La evaluación de los recursos hídricos en el Libro Blanco del Agua en España. Ingeniería del Agua 1999, 6, 125–138. [Google Scholar] [CrossRef]
- Murillo, J.M.; Navarro, J.A. Aplicación del modelo de Témez a la determinación de la aportación superficial y subterránea del sistema hidrológico Cornisa-Vega de Granada para su implementación en un modelo de uso conjunto. Boletín Geológico y Minero 2011, 122, 363–388. [Google Scholar]
- IGN (Instituto Geográfico Nacional). Metodología de Producción de la Base de Datos CLC-CHANGE 2000–2006. Available online: http://centrodedescargas.cnig.es/CentroDescargas/ (accessed on 15 December 2010).
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models, part I: A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gan, T.Y.; Burges, S.J. An assessment of a conceptual rainfall-runoff model’s ability to represent the dynamics of small hypothetical catchments: 1. Models, model properties, and experimental design. Water Resour. Res. 1990, 26, 1595–1604. [Google Scholar] [CrossRef]
- Senarath, S.; Ogden, F.L.; Downer, C.W.; Sharif, H.O. On the calibration and verification of two-dimentional distribute, Hortonian, continuous watershed models. Water Resour. Res. 2000, 36, 1495–1510. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.; Yang, T.; Li, F.; Liang, K.; Hu, S.; Liu, C. Assessment of the influences of different potential evapotranspiration inputs on the performance of monthly hydrological models under different climatic conditions. J. Hydrometeorol. 2016, 17, 2259–2274. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Xu, C.Y.; Singh, V.P. Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resour. Manag. 2002, 16, 197–219. [Google Scholar] [CrossRef]
- Maestre-Valero, J.F.; Martínez-Álvarez, V.; González Real, M.M. Regionalization of the Hargreaves coefficient to estimate long-term reference evapotranspiration series in SE Spain. Span. J. Agric. Res. 2013, 11, 1137–1152. [Google Scholar] [CrossRef]
- Shahidian, R.; Serralheiro, P.; Serrano, J.; Teixeira, J.L. Parametric calibration of the Hargreaves–Samani equation for use at new locations. Hydrol. Process. 2013, 27, 605–616. [Google Scholar] [CrossRef]
- Shiri, J.; Sadraddini, A.A.; Nazemi, A.H.; Marti, P.; Fard, A.F.; Kisi, O.; Landeras, G. Independent testing for assessing the calibration of the Hargreaves–Samani equation: New heuristic alternatives for Iran. Comput. Electron. Agric. 2015, 117, 70–80. [Google Scholar] [CrossRef]
- Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Andréassian, V.; Anctil, F.; Loumagne, C. Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2-Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol. 2005, 303, 290–306. [Google Scholar] [CrossRef]
Name | Institute | GCM |
---|---|---|
C4I/RCA3 | C4I | HadCM3Q16 |
CNRM/RM5.1 | CNRM | ARPEGE_RM5.1 |
DMI/ARPEGE | DMI | ARPEGE |
DMI/ECHAM5-r3 | DMI | ECHAM5-r3 |
DMI/BCM | DMI | BCM |
ETHZ/CLM | ETHZ | HadCM3Q0 |
ICTP/REGCM3 | ICTP | ECHAM5-r3 |
KNMI/RACMO2 | KNMI | ECHAM5-r3 |
METNO/BCM | METNO | BCM |
METNO/HADCM3Q0 | METNO | HadCM3Q0 |
MPI-M/REMO | MPI | ECHAM5-r3 |
OURANOS/MRCC4.2.1 | OURANOS | CGCM3 |
SMHI/BCM | SMHI | BCM |
SMHI/ECHAM5-r3 | SMHI | ECHAM5-r3 |
SMHI/HadCM3Q3 | SMHI | HadCM3Q3 |
UCLM/PROMES | UCLM | HadCM3Q0 |
Data | Period | Mean Annual Runoff (mm) | Mean Annual Rainfall (mm) | PET (mm) |
---|---|---|---|---|
Observed | 1961–1990 | 211 | 628 | 1430 |
Ensemble | 2021–2050 | 171 | 624 | 1486 |
Variation | −20% (0.05 *) | −1% (0.82) | 4% (0.005 *) | |
Observed | 1971–2000 | 187 | 562 | 1433 |
Ensemble | 2021–2050 | 171 | 624 | 1486 |
Variation | 2.5% (0.57) | 11% (0.17) | 3.70% (0.0005 *) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olmos Giménez, P.; García-Galiano, S.G.; Giraldo-Osorio, J.D. Improvement of Hydroclimatic Projections over Southeast Spain by Applying a Novel RCM Ensemble Approach. Water 2018, 10, 52. https://doi.org/10.3390/w10010052
Olmos Giménez P, García-Galiano SG, Giraldo-Osorio JD. Improvement of Hydroclimatic Projections over Southeast Spain by Applying a Novel RCM Ensemble Approach. Water. 2018; 10(1):52. https://doi.org/10.3390/w10010052
Chicago/Turabian StyleOlmos Giménez, Patricia, Sandra G. García-Galiano, and Juan Diego Giraldo-Osorio. 2018. "Improvement of Hydroclimatic Projections over Southeast Spain by Applying a Novel RCM Ensemble Approach" Water 10, no. 1: 52. https://doi.org/10.3390/w10010052
APA StyleOlmos Giménez, P., García-Galiano, S. G., & Giraldo-Osorio, J. D. (2018). Improvement of Hydroclimatic Projections over Southeast Spain by Applying a Novel RCM Ensemble Approach. Water, 10(1), 52. https://doi.org/10.3390/w10010052