The Reducing Effect of Green Spaces with Different Vegetation Structure on Atmospheric Particulate Matter Concentration in BaoJi City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Classification of Green Space Based on Vegetation Structure
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Effects of Factors on PM Concentration
3.2. Effects of Environmental Factors on PM Concentration
3.3. Effects of Vegetation Structural Factors on PM Concentration
4. Discussion
4.1. Effects of Environmental Factors on PM Concentration
4.2. Effects of Vegetation Structural Factors on PM Concentration
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ming, L.; Jin, L.; Li, J.; Fu, P.; Yang, W.; Liu, D.; Zhang, G.; Wang, Z.; Li, X. PM2.5 in the Yangtze River delta, China: Chemical compositions, seasonal variations, and regional pollution events. Environ. Pollut. 2017, 223, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Schleicher, N.; Norra, S.; Fricker, M.; Dietze, V.; Kaminski, U.; Cen, K.A.; Stuben, D. Dynamics and origin of PM2.5 during a three-year sampling period in Beijing, China. J. Environ. Monit. 2011, 13, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Fang, D. Impact Assessment of Air Pollution on the Population Health in Major Cities of China. Master’s Thesis, Nanjing University, Nanjing, China, May 2014. [Google Scholar]
- Kan, H.D.; Chen, B.H. Particulate air pollution in urban areas of Shanghai, China: Health-based economic assessment. Sci. Total Environ. 2004, 322, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Khreis, H.; Kelly, C.; Tate, J.; Parslow, R.; Lucas, K.; Nieuwenhuijsen, M. Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environ. Int. 2017, 100, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Sosa, B.S.; Porta, A.; Colman Lerner, J.E.; Banda Noriega, R.; Massolo, L. Human health risk due to variations in PM10-PM2.5 and associated PAHs levels. Atmos. Environ. 2017, 160, 27–35. [Google Scholar] [CrossRef]
- Song, C.; He, J.; Wu, L.; Jin, T.; Chen, X.; Li, R.; Ren, P.; Zhang, L.; Mao, H. Health burden attributable to ambient PM2.5 in China. Environ. Pollut. 2017, 223, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.; Elands, B.; Buijs, A. Social interactions in urban parks: Stimulating social cohesion? Urban For. Urban Green. 2010, 9, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Richardson, E.A.; Mitchell, R. Gender differences in relationships between urban green space and health in the United Kingdom. Soc. Sci. Med. 2010, 71, 568–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Nielsen, A.B.; van den Bosch, M.; Maruthaveeran, S.; van den Bosch, C.K. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosyst. 2014, 17, 305–327. [Google Scholar] [CrossRef]
- Janhall, S. Review on urban vegetation and particle air pollution-deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Litschke, T.; Kuttler, W. On the reduction of urban particle concentration by vegetation-a review. Meteorol. Z. 2008, 17, 229–240. [Google Scholar] [CrossRef]
- Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For. Urban Green. 2016, 20, 249–253. [Google Scholar] [CrossRef]
- Liang, D.; Ma, C.; Wang, Y.-Q.; Wang, Y.-J.; Zhao, C.-X. Quantifying PM2.5 capture capability of greening trees based on leaf factors analyzing. Environ. Sci. Pollut. Res. 2016, 23, 21176–21186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.X.; Wang, Y.H.; Yang, J.; Xie, B.Z.; Shi, H. Morphological structure of leaves and particulate matter capturing capability of common broad-leaved plant species in Beijing. In Proceedings of the 2015 International Conference on Industrial Technology and Management Science, Tianjin, China, 27–28 March 2015; Volume 34, pp. 581–584. [Google Scholar]
- Luo, M. Study on Air Pollutants Removal Effects of Green Space with Different Community Structures. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, June 2013. [Google Scholar]
- Sun, S.P. Effect of Virescence on Inhalable Particulate Matter (PM10) and Dustfalls in Downtown of Beijing. Master’s Thesis, China Agricultural University, Beijing, China, June 2003. [Google Scholar]
- Gao, G.; Sun, F.; Nguyen Thi Thanh, T.; Lun, X.; Yu, X. Different concentrations of TSP, PM10, PM2.5, and PM1 of several urban forest types in different seasons. Pol. J. Environ. Stud. 2015, 24, 2387–2395. [Google Scholar] [CrossRef]
- Bottalico, F.; Chirici, G.; Giannetti, F.; De Marco, A.; Nocentini, S.; Paoletti, E.; Salbitano, F.; Sanesi, G.; Serenelli, C.; Travaglini, D. Air pollution removal by green infrastructures and urban forests in the city of florence. Agric. Agric. Sci. Procedia 2016, 8, 243–251. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhao, S.T.; Guo, J.; Li, Y.M. Effects of different plant communities on the concentration of PM2.5 in parks. Mod. Landsc. Archit. 2014, 11, 11–13. [Google Scholar]
- Yin, S.; Cai, J.P.; Chen, L.P.; Shen, Z.M.; Zou, X.D.; Wu, D.; Wang, W.H. Effects of vegetation status in urban green spaces on particles removal in a canyon street atmosphere. Acta Ecol. Sin. 2007, 27, 4590–4595. [Google Scholar]
- Qi, F.Y. Distribution Characteristics of Atmospheric Particles from Highways and the Retaining Effect of Greenbelts. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, June 2009. [Google Scholar]
- Irga, P.J.; Burchett, M.D.; Torpy, F.R. Does urban forestry have a quantitative effect on ambient air quality in an urban environment? Atmos. Environ. 2015, 120, 173–181. [Google Scholar] [CrossRef]
- Wang, H.; Shi, H.; Wang, Y. Effects of weather, time, and pollution level on the amount of particulate matter deposited on leaves of ligustrum lucidum. Sci. World J. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Yu, X.X.; Zhang, Z.M.; Liu, M.M.; Ruan, S.Q.C. Pollution characteristics of atmospheric particulates in forest belts and their relationship with meteorological conditions. Chin. J. Ecol. 2014, 33, 1715–1721. [Google Scholar]
- Wang, H.X.; Shi, H.; Wang, Y.H. Dynamics of the captured quantity of particulate matter by plant leaves under typical weather conditions. Acta Ecol. Sin. 2015, 35, 1696–1705. [Google Scholar]
- Zhang, N. Effect of PM2.5 Variation Characteristics for Meteorological Factors in Beijing Winter. Master’s Thesis, Xinjiang University, Wulumuqi, China, May 2016. [Google Scholar]
- Weather China. Available online: http://www.weather.com.cn/cityintro/101110901.shtml (accessed on 28 June 2018).
- Gao, T.; Qiu, L.; Hammer, M.; Gunnarsson, A. The importance of temporal and spatial vegetation structure information in biotope mapping schemes: A case study in Helsingborg, Sweden. Environ. Manag. 2012, 49, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Zehm, A.; Nobis, M.; Schwabe, A. Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora Morphol. Distrib. Funct. Ecol. Plants 2003, 198, 142–160. [Google Scholar] [CrossRef]
- Yli-Pelkonen, V.; Setälä, H.; Viippola, V. Urban forests near roads do not reduce gaseous air pollutant concentrations but have an impact on particles levels. Landsc. Urban Plan. 2017, 158, 39–47. [Google Scholar] [CrossRef]
- Lehmann, A.; Overton, J.M.; Leathwick, J.R. GRASP: Generalized regression analysis and spatial prediction. Ecol. Model. 2002, 160, 165–183. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). J. Environ. Manag. 2008, 88, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, Y.; Yang, L.; Fu, L.; He, K.; Wang, S.; Hao, J.; Chen, J.; Li, C. The impact of transportation control measures on emission reductions during the 2008 Olympic Games in Beijing, China. Atmos. Environ. 2010, 44, 285–293. [Google Scholar] [CrossRef]
- Tao, L.; Harley, R.A. Changes in fine particulate matter measurement methods and ambient concentrations in California. Atmos. Environ. 2014, 98, 676–684. [Google Scholar] [CrossRef]
- Wang, S.; Li, G.; Gong, Z.; Du, L.; Zhou, Q.; Meng, X.; Xie, S.; Zhou, L. Spatial distribution, seasonal variation and regionalization of PM2.5 concentrations in China. Sci. China Chem. 2015, 58, 1435–1443. [Google Scholar] [CrossRef]
- Przybysz, A.; Saebo, A.; Hanslin, H.M.; Gawronski, S.W. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 2014, 481, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Freer-Smith, P.H.; El-Khatib, A.A.; Taylor, G. Capture of particulate pollution by trees: A comparison of species typical of semi-arid areas (Ficus nitida and Eucalyptus globulus) with European and North American species. Water Air Soil Pollut. 2004, 155, 173–187. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Particulate pollution capture by urban trees: Effect of species and windspeed. Glob. Chang. Biol. 2000, 6, 995–1003. [Google Scholar] [CrossRef]
- Grantz, D.A.; Garner, J.H.B.; Johnson, D.W. Ecological effects of particulate matter. Environ. Int. 2003, 29, 213–239. [Google Scholar] [CrossRef]
- Prusty, B.A.K.; Mishra, P.C.; Azeez, P.A. Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicol. Environ. Saf. 2005, 60, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.P.; Adams, P.J.; Pandis, S.N. Sensitivity of PM2.5 to climate in the Eastern US: A modeling case study. Atmos. Chem. Phys. 2007, 7, 4295–4309. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the united states. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Huffman, J.A.; Prenni, A.J.; DeMott, P.J.; Poehlker, C.; Mason, R.H.; Robinson, N.H.; Froehlich-Nowoisky, J.; Tobo, Y.; Despres, V.R.; Garcia, E.; et al. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 2013, 13, 6151–6164. [Google Scholar] [CrossRef]
- Liu, X.; Yu, X.; Zhang, Z. PM2.5 concentration differences between various forest types and its correlation with forest structure. Atmosphere 2015, 6, 1801–1815. [Google Scholar] [CrossRef]
- Li, Q. Study on the Reduction Effects of Green Space Landscape Pattern to PM10 Pollution in Wuhan. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, June 2012. [Google Scholar]
- Selmi, W.; Weber, C.; Riviere, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Jiao, L.; Zhao, S.; Yuan, M.; Li, X.; Han, Y.; Zhang, B.; Dong, T. Examining the impacts of land use on air quality from a spatio-temporal perspective in Wuhan, China. Atmosphere 2016, 7, 62. [Google Scholar] [CrossRef]
- Zheng, S.; Zhou, X.; Singh, R.P.; Wu, Y.; Ye, Y.; Wu, C. The spatiotemporal distribution of air pollutants and their relationship with land-use patterns in Hangzhou city, China. Atmosphere 2017, 8, 110. [Google Scholar] [CrossRef]
- Zhao, S.T.; Li, X.Y.; Li, Y.M. The Characteristics of deposition of airborne particulate matters with different size on certain plants. Ecol. Environ. Sci. 2014, 23, 271–276. [Google Scholar]
- Guo, E.G.; Wang, C.; Qie, G.F.; Cai, Y. Influence of typical weather conditions on the airborne particulate matters in urban forests in northern China. China Environ. Sci. 2013, 33, 1185–1198. [Google Scholar]
- Cai, M.; Xin, Z.; Yu, X. Spatio-temporal variations in PM leaf deposition: A meta-analysis. Environ. Pollut. 2017, 231, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.Y.; Li, H.Y.; Yang, J.N. The temporal-spatial variation characteristics and influencing factors of absorbing air particulate matters by plants: A review. Chin. J. Ecol. 2016, 35, 524–533. [Google Scholar]
- Zhao, C.X.; Wang, Y.J.; Wang, Y.Q.; Zhang, H.L. Interactions between fine particulate matter (PM2.5) and vegetation: A review. Chin. J. Ecol. 2013, 32, 2203–2210. [Google Scholar]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Urban woodlands: Their role in reducing the effects of particulate pollution. Environ. Pollut. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Rissanen, T.; Hyotylainen, T.; Kallio, M.; Kronholm, J.; Kulmala, M.; Rikkola, M.-L. Characterization of organic compounds in aerosol particles from a coniferous forest by GC-MS. Chemosphere 2006, 64, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Salmond, J.A.; Williams, D.E.; Laing, G.; Kingham, S.; Dirks, K.; Longley, I.; Henshaw, G.S. The influence of vegetation on the horizontal and vertical distribution of pollutants in a street canyon. Sci. Total Environ. 2013, 443, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Wania, A.; Bruse, M.; Blond, N.; Weber, C. Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. J. Environ. Manag. 2012, 94, 91–101. [Google Scholar] [CrossRef] [PubMed]
Level | Green Space | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level 1 | Open green space (<10% trees/shrubs) | Semi-closed green space (30%–70% trees/shrubs) | Closed green space (>70% trees/shrubs) | |||||||||||||
Level 2 | lawn | Shrub | Broadleaved | Coniferous | Mixed | Broadleaved | Coniferous | Mixed | ||||||||
Level 3 | - | - | 1-layered | >1-layered | 1-layered | >1-layered | ||||||||||
Code | OL 1 | OS 2 | S1B 3 | S2B 4 | S1C 5 | S1M 6 | S2M 7 | C1B 8 | C2B 9 | C1C 10 | C1M 11 |
Vegetation Structures | Number of Sampling Plots in Each Study Area | Total | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10 | ||
OL | 1 | 1 | 1 | 3 | 2 | 8 | |||||
OS | 2 | 1 | 2 | 1 | 1 | 7 | |||||
S1B | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 9 | |||
S2B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | |
S1C | 2 | 1 | 3 | ||||||||
S1M | 1 | 1 | 1 | 2 | 1 | 6 | |||||
S2M | 2 | 1 | 2 | 1 | 6 | ||||||
C1B | 1 | 1 | 1 | 2 | 1 | 6 | |||||
C2B | 3 | 3 | |||||||||
C1C | 1 | 1 | 2 | ||||||||
C1M | 3 | 3 | |||||||||
Control Group (C) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
Sum | 12 | 10 | 9 | 5 | 14 | 4 | 6 | 4 | 4 | 4 | 72 |
PM | Df 1 | PM2.5 | PM10 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Factors | Seq SS 2 | Adj SS 3 | Adj MS 4 | F 5 | P 6 | Seq SS 2 | Adj SS 3 | Adj MS 4 | F 5 | P 6 | ||
Location | 9 | 46.70 | 267.16 | 29.685 | 49.227 | 0.000 | 439.18 | 956.38 | 106.264 | 32.321 | 0.000 | |
Time | 4 | 384.23 | 31.87 | 7.967 | 13.212 | 0.000 | 1088.55 | 1128.94 | 282.234 | 85.843 | 0.000 | |
Wind velocity | 1 | 63.87 | 63.87 | 63.868 | 105.914 | 0.000 | 140.70 | 140.70 | 140.703 | 42.795 | 0.000 | |
Temperature | 1 | 3.84 | 112.82 | 112.825 | 187.098 | 0.000 | 63.00 | 369.94 | 369.939 | 112.518 | 0.000 | |
Humidity | 1 | 514.45 | 496.89 | 496.888 | 823.996 | 0.000 | 934.76 | 899.86 | 899.863 | 273.697 | 0.000 | |
Area | 1 | 0.45 | 0.00 | 0.000 | 0.000 | 0.983 | 11.41 | 7.69 | 7.692 | 2.340 | 0.126 | |
Vegetation structure | 10 | 3.01 | 5.64 | 0.564 | 0.935 | 0.500 | 65.25 | 89.69 | 8.969 | 2.728 | 0.002 |
PM | PM2.5 | PM10 | |||||||
---|---|---|---|---|---|---|---|---|---|
Location | C 1 | SE 2 | T 3 | P 4 | C 1 | SE 2 | T 3 | P 4 | |
G1 | −0.816 | 0.069 | −11.860 | 0.000 | −1.465 | 0.161 | −9.119 | 0.000 | |
G2 | −0.205 | 0.052 | −3.972 | 0.000 | −0.498 | 0.121 | −4.124 | 0.000 | |
G3 | −0.968 | 0.075 | −12.864 | 0.000 | −1.792 | 0.176 | −10.199 | 0.000 | |
G4 | 0.263 | 0.072 | 3.665 | 0.000 | 0.329 | 0.168 | 1.964 | 0.050 | |
G5 | 0.226 | 0.051 | 4.437 | 0.000 | 0.220 | 0.119 | 1.847 | 0.065 | |
G6 | 0.635 | 0.083 | 7.691 | 0.000 | 1.471 | 0.193 | 7.630 | 0.000 | |
G7 | 0.605 | 0.065 | 9.357 | 0.000 | 1.334 | 0.151 | 8.828 | 0.000 | |
G8 | 0.492 | 0.085 | 5.775 | 0.000 | 0.683 | 0.199 | 3.430 | 0.001 | |
G9 | 0.539 | 0.090 | 5.993 | 0.000 | 1.021 | 0.210 | 4.860 | 0.000 | |
G10 | −0.772 | 0.083 | −9.283 | 0.000 | −1.302 | 0.194 | −6.710 | 0.000 |
PM | PM2.5 | PM10 | |||||||
---|---|---|---|---|---|---|---|---|---|
Time | C | SE | T | P | C | SE | T | P | |
08:00–10:00 | 0.214 | 0.078 | 2.727 | 0.006 | 0.442 | 0.183 | 2.412 | 0.016 | |
10:00–12:00 | 0.230 | 0.038 | 6.017 | 0.000 | 0.101 | 0.089 | 1.132 | 0.258 | |
12:00–14:00 | −0.193 | 0.046 | −4.197 | 0.000 | −1.409 | 0.107 | −13.114 | 0.000 | |
14:00–16:00 | −0.234 | 0.047 | −4.974 | 0.000 | −0.272 | 0.110 | −2.475 | 0.013 | |
16:00–18:00 | −0.016 | 0.044 | −0.374 | 0.708 | 1.139 | 0.102 | 11.149 | 0.000 |
PM | PM2.5 | PM10 | |||||||
---|---|---|---|---|---|---|---|---|---|
Vegetation Structure | C | SE | T | P | C | SE | T | P | |
OL | −0.062 | 0.059 | −1.054 | 0.292 | −0.318 | 0.138 | −2.297 | 0.022 | |
OS | −0.115 | 0.061 | −1.884 | 0.060 | −0.444 | 0.143 | −3.106 | 0.002 | |
S1B | 0.037 | 0.056 | 0.669 | 0.504 | −0.144 | 0.130 | −1.105 | 0.270 | |
S2B | −0.062 | 0.056 | −1.113 | 0.266 | 0.053 | 0.130 | 0.403 | 0.687 | |
S1C | −0.050 | 0.084 | −0.597 | 0.551 | −0.256 | 0.196 | −1.309 | 0.191 | |
S1M | −0.011 | 0.060 | −0.186 | 0.853 | −0.133 | 0.139 | −0.954 | 0.340 | |
S2M | −0.002 | 0.058 | −0.034 | 0.973 | 0.155 | 0.136 | 1.143 | 0.253 | |
C1B | 0.016 | 0.058 | 0.271 | 0.786 | −0.049 | 0.135 | −0.363 | 0.716 | |
C2B | −0.012 | 0.098 | −0.121 | 0.904 | 0.685 | 0.228 | 3.007 | 0.003 | |
C1C | 0.183 | 0.098 | 1.868 | 0.062 | 0.246 | 0.228 | 1.080 | 0.280 | |
C1M | 0.079 | 0.091 | 0.869 | 0.385 | 0.205 | 0.213 | 0.959 | 0.338 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, L.; Liu, F.; Zhang, X.; Gao, T. The Reducing Effect of Green Spaces with Different Vegetation Structure on Atmospheric Particulate Matter Concentration in BaoJi City, China. Atmosphere 2018, 9, 332. https://doi.org/10.3390/atmos9090332
Qiu L, Liu F, Zhang X, Gao T. The Reducing Effect of Green Spaces with Different Vegetation Structure on Atmospheric Particulate Matter Concentration in BaoJi City, China. Atmosphere. 2018; 9(9):332. https://doi.org/10.3390/atmos9090332
Chicago/Turabian StyleQiu, Ling, Fang Liu, Xiang Zhang, and Tian Gao. 2018. "The Reducing Effect of Green Spaces with Different Vegetation Structure on Atmospheric Particulate Matter Concentration in BaoJi City, China" Atmosphere 9, no. 9: 332. https://doi.org/10.3390/atmos9090332
APA StyleQiu, L., Liu, F., Zhang, X., & Gao, T. (2018). The Reducing Effect of Green Spaces with Different Vegetation Structure on Atmospheric Particulate Matter Concentration in BaoJi City, China. Atmosphere, 9(9), 332. https://doi.org/10.3390/atmos9090332