Levels of Antioxidant Compound Glutathione in Moss from Industrial Areas
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling and Processing
2.2. Determination of Glutathione Levels
2.3. Chemical Analysis
2.4. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Varela, Z.; Aboal, J.R.; Carballeira, A.; Real, C.; Fernández, J.A. Use of a moss biomonitoring method to compile emission inventories for small-scale industries. J. Hazard. Mater. 2014, 275, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.A.; Boquete, M.T.; Carballeira, A.; Aboal, J.R. A critical review of protocols for moss biomonitoring of atmospheric deposition: Sampling and sample preparation. Sci. Total Environ. 2015, 517, 132–150. [Google Scholar] [CrossRef] [PubMed]
- Aboal, J.R.; Fernández, J.A.; Boquete, T.; Carballeira, A. Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses? Sci. Total Environ. 2010, 408, 6291–6297. [Google Scholar] [CrossRef] [PubMed]
- Boquete, M.T.; Fernández, J.A.; Carballeira, A.; Aboal, J.R. Relationship between trace metal concentrations in the terrestrial moss Pseudoscleropodium purum and in bulk deposition. Environ. Pollut. 2015, 201, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Couto, J.A.; Aboal, J.R.; Fern_andez, J.A.; Carballeira, A. A new method for testing the sensitivity of active biomonitoring: An example of its application to a terrestrial moss. Chemosphere 2004, 57, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Carballeira, C.B.; Aboal, J.R.; Fernández, J.A.; Carballeira, A. Comparison of the accumulation of elements in two terrestrial moss species. Atmos. Environ. 2008, 42, 4904–4917. [Google Scholar] [CrossRef]
- González, A.G.; Pokrovsky, O.S. Metal adsorption on mosses: Toward a universal adsorption model. J. Colloid Interface Sci. 2014, 415, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Llamazares, A.; Ángel Fernández, J.; Carballeira, A.; Aboal, J.R. The sequential elution technique applied to cryptogams: A literature review. J. Bryol. 2011, 33, 267–278. [Google Scholar] [CrossRef]
- Spagnuolo, V.; Giordano, S.; Adamo, P.; Pérez-Llamazares, A.A.; Carballeira, A.; Fernández, J.A.; Aboal, J.R. Distinguishing metal bioconcentration from PM in moss tissue: Testing methods of removing particles attached to the moss surface. Sci. Total Environ. 2013, 463, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Bruns, I.; Sutter, K.; Menge, S.; Neumann, D.; Krauss, G.J. Cadmium lets increase the Glutathione pool in bryophytes. J. Plant Physiol. 2001, 158, 79–89. [Google Scholar] [CrossRef]
- Takács, Z.; Tuba, Z.; Smirnoff, N. Exaggeration of desiccation stress by heavy metal pollution in Tortula ruralis: A pilot study. Plant Growth Regul. 2001, 35, 157–160. [Google Scholar] [CrossRef]
- Saxena, A.; Saxena, A. Bioaccumulation and Glutathione-mediated detoxification of copper and cadmium in Sphagnum squarrosum Crome Samml. Environ. Monit. Assess. 2012, 184, 4097–4103. [Google Scholar] [CrossRef] [PubMed]
- Rauser, W.E. Structure and function of metal chelators produced by plants. Cell Biochem. Biophys. 1999, 31, 19–48. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.J.; Hell, R. Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth. Res. 2005, 86, 435–457. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Iqbal, M.; Qurat-Ul-Ain, S.O.B.I.A.; Rasheed, R.; Mahmood, S.; Perveen, A.; Wahid, A. Cadmium dose and exposure-time dependent alterations in growth and physiology of maize (Zea mays). Int. J. Agric. Biol. 2012, 14, 959–964. [Google Scholar]
- Hernández, L.E.; Sobrino-Plata, J.; Montero-Palmero, M.B.; Carrasco-Gil, S.; Flores-Cáceres, M.L.; Ortega-Villasante, C.; Escobar, C. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J. Exp. Bot. 2015, 66, 2901–2911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.Y.; Wang, Y.S.; Sun, C.C.; Dong, J.D.; Sun, Z.X. The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Oceanol. Hydrobiol. Stud. J. 2010, 39, 11–25. [Google Scholar] [CrossRef]
- Rausch, T.; Gromes, R.; Liedschulte, V.; Müller, I.; Bogs, J.; Galovic, V.; Wachter, A. Novel insight into the regulation of GSH biosynthesis in higher plants. Plant Biol. 2007, 9, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Mhamdi, A.; Chaouch, S.; Han, Y.I.; Neukermans, J.; Marquez-Garcia, B.; Queval, G.; Foyer, C.H. Glutathione in plants: An integrated overview. Plant Cell Environ. 2012, 35, 454–484. [Google Scholar] [CrossRef] [PubMed]
- Hernández-allica, J.; Garbisu, C.; Becerril, J.M.; Barrutia, O.; García-plazaola, J.I.; Zhao, F.J.; McGrath, S.P. Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant Cell Environ. 2006, 29, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Huang, H.G.; Yang, X.E.; Razafindrabe, B.H.N.; Inouhe, M. The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J. Hazard. Mater. 2010, 177, 437–444. [Google Scholar]
- Schat, H.; Llugany, M.; Vooijs, R.; Hartley-Whitaker, J.; Bleeker, P.M. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J. Exp. Bot. 2002, 53, 2381–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noctor, G.; Arisi, A.C.M.; Jouanin, L.; Foyer, C.H. Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol. 1998, 118, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, H.J.; Greiner, S.; Rausch, T.; Haag-Kerwer, A. In seedlings of the heavy metal accumulator Brassica juncea Cu2+ differentially affects transcript amounts for gamma-glutamylcysteine synthetase (gamma-ECS) and metallothionein (MT2). FEBS Lett. 1997, 404, 216–220. [Google Scholar] [CrossRef]
- Bleuel, C.; Wesenbetg, D.; Sutter, K.; Miersch, J.; Braha, B.; Bärlocher, F.; Krauss, G.J. The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals: 3. Cd2+ accumulation capacities and biochemical stress response of two Fontinalis species. Sci. Total Environ. 2005, 345, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Leinenweber, G.; Stegen, S.; Diaz-Palma, P. Increase of total glutathione as a response to Cd induced stress in a Chilean endemic bryophytes (Thuidium sp.). J. Chil. Chem. Soc. 2009, 54, 401–404. [Google Scholar] [CrossRef]
- Saxena, A.; Saxena, D.K.; Srivastava, H.S. The influence of Glutathione on physiological effects of lead and its accumulation in moss Sphagnum squarrosum. Water Air Soil Pollut. 2003, 143, 351–361. [Google Scholar] [CrossRef]
- Petraglia, A.; De Benedictis, M.; Degola, F.; Pastore, G.; Calcagnho, M.; Ruotolo, R.; Mengoni, A.; di Toppi, L.S. The capability to synthesize phytochelatins and the presence of constitutive and functional phytochelatin synthases are ancestral (plesiomorphic) characters for basal land plants. J. Exp. Bot. 2014, 65, 1153–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, J.A.; Aboal, J.R.; Real, C.; Carballeira, A. A new method biomonitoring method for detecting sources of small scale pollution. Atmos. Environ. 2007, 41, 2098–2110. [Google Scholar] [CrossRef]
- Fernandez, J.A.; Aboal, J.R.; Couto, J.A.; Carballeira, A. Sampling optimization at the sampling-site scale for monitoring atmospheric deposition using moss chemistry. Atmos Environ. 2002, 36, 1163–1172. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Carral, E.; Puente, X.; Villares, R.; Carballeira, A. Background heavy metal levels in estuarine sediments and organisms in Galicia (northwest Spain) as determined by modal analysis. Sci. Total Environ. 1995, 172, 175–188. [Google Scholar] [CrossRef]
- Carballeira, A.; Couto, J.A.; Fernández, J.A. Estimation of background levels of various elements in terrestrial mosses from Galicia (NW Spain). Water Air Soil Pollut. 2002, 133, 235–252. [Google Scholar] [CrossRef]
- Hall, J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 2002, 53, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, P.; Samantaray, S.; Rout, G.R. Studies on cadmium toxicity in plants: A review. Environ. Pollut. 1997, 98, 29–36. [Google Scholar] [CrossRef]
- Vig, K.; Megharaj, M.; Sethunathan, N.; Naidu, R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Adv. Environ. Res. 2003, 8, 121–135. [Google Scholar] [CrossRef]
- Brown, D.H.; Wells, J.M. Sequential Elution Technique for Determining the Cellular Location of Cations. In Methods in Bryology; Glime, J.M., Ed.; Hattori Botanical Laboratory: Nichinan, Japan, 1988; pp. 227–233. [Google Scholar]
- Brown, D.H. Sequential Elution Procedures for Establishing the Cellular Distribution Patterns of Metals in Cryptogamic Plants. In Bioindicators of Environmental Health; Munawar, M., Hänninen, O., Roy, S., Munawar, N., Kärenlampi, L., Brown, D., Eds.; SPB Academic Publishing: Amsterdam, The Netherlands, 1995; pp. 203–209. [Google Scholar]
- Fernández, J.Á.; Pérez-Llamazares, A.; Carballeira, A.; Aboal, J.R. Temporal variability of metal uptake in different cell compartments in mosses. Water Air Soil Pollut. 2013, 224, 1481. [Google Scholar] [CrossRef]
ID | Factories | UTM | SS | UTM | Distance | ||
---|---|---|---|---|---|---|---|
X | Y | X | Y | (Meters) | |||
A | Ferrous smelter | 567779 | 4818462 | A1 | 567549 | 4818831 | 433 |
A2 | 567691 | 4819795 | 1300 | ||||
A3 | 568190 | 4819634 | 1200 | ||||
B | Ferrous smelter | 485739 | 4755025 | B1 | 486111 | 4755275 | 447 |
B2 | 487005 | 4755784 | 1500 | ||||
C | Aluminium smelter | 623612 | 4839748 | C1 | 623018 | 4839320 | 734 |
C2 | 622255 | 4839947 | 1400 | ||||
C3 | 622030 | 4838827 | 1800 | ||||
D | Ceramic factory | 544900 | 4659827 | D1 | 545087 | 4659794 | 200 |
D2 | 545288 | 4660846 | 1100 | ||||
E | Chipboard manufacturing | 575695 | 4819339 | E1 | 575568 | 4819649 | 339 |
E2 | 576410 | 4819930 | 930 |
Metal | “Abundance Number” | “Sink-Factor” | TrF |
---|---|---|---|
Ni | 1 | 320 | 1 |
Pb | 2.1 | 350 | 1.5 |
Cd | 77.9 | 80 | 4.4 |
SS | Cd | Ni | Pb | |||
---|---|---|---|---|---|---|
CF | Risk Factor | CF | Risk Factor | CF | Risk Factor | |
A 1 | 7.50 | 33 | 8.33 | 0.6 | 16.36 | 25 |
A 2 | 7.50 | 33 | 11.67 | 0.9 | 10.91 | 16 |
A 3 | 2.50 | 11 | 7.00 | 0.5 | 4.05 | 6 |
B 1 | 3.75 | 17 | 10.00 | 0.7 | 3.23 | 5 |
B 2 | 1.25 | 6 | 7.67 | 0.6 | 1.09 | 2 |
C 1 | 3.75 | 17 | 16.67 | 1.2 | 1.91 | 3 |
C 2 | 2.50 | 11 | 10.83 | 0.8 | 1.32 | 2 |
C 3 | 1.25 | 6 | 12.50 | 0.9 | 1.50 | 2 |
D 1 | 1.25 | 6 | 5.83 | 0.4 | 1.32 | 2 |
D 2 | 1.25 | 6 | 3.75 | 0.3 | 0.45 | 1 |
E 1 | 1.25 | 6 | 6.75 | 0.5 | 0.86 | 1 |
E 2 | 1.25 | 6 | 10.00 | 0.7 | 2.14 | 3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varela, Z.; Debén, S.; Saxena, D.K.; Aboal, J.R.; Fernández, J.Á. Levels of Antioxidant Compound Glutathione in Moss from Industrial Areas. Atmosphere 2018, 9, 284. https://doi.org/10.3390/atmos9070284
Varela Z, Debén S, Saxena DK, Aboal JR, Fernández JÁ. Levels of Antioxidant Compound Glutathione in Moss from Industrial Areas. Atmosphere. 2018; 9(7):284. https://doi.org/10.3390/atmos9070284
Chicago/Turabian StyleVarela, Zulema, Sofía Debén, Dinesh K. Saxena, Jesús R. Aboal, and J. Ángel Fernández. 2018. "Levels of Antioxidant Compound Glutathione in Moss from Industrial Areas" Atmosphere 9, no. 7: 284. https://doi.org/10.3390/atmos9070284
APA StyleVarela, Z., Debén, S., Saxena, D. K., Aboal, J. R., & Fernández, J. Á. (2018). Levels of Antioxidant Compound Glutathione in Moss from Industrial Areas. Atmosphere, 9(7), 284. https://doi.org/10.3390/atmos9070284