Projected Changes in Wet-Bulb Globe Temperature under Alternative Climate Scenarios
Abstract
:1. Introduction
2. Methods and Experiments
2.1. Davies-Jones Method for Calculating Wet-Bulb Globe Temperature
2.2. Representative Concentration Pathways
2.3. Observations and Coupled Model Projections
2.4. Correcting Model Biases
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Model | RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5 |
---|---|---|---|---|
ACCESS1.0 | × | × | ||
ACCESS1.3 | × | × | ||
BCC-CSM1.1(m) | × | × | × | × |
BCC-CSM1.1 | × | × | × | × |
BNU-ESM | × | × | × | |
CanESM2 | × | × | × | |
CCSM4 | × | × | × | × |
CESM1(CAM5.1,FV2) | × | × | ||
CESM1(CAM5) | × | × | × | × |
CNRM-CM5 | × | × | × | |
CSIRO-Mk3.6.0 | × | × | × | × |
GFDL-CM3 | × | × | × | × |
GFDL-ESM2G | × | × | × | × |
GFDL-ESM2M | × | × | × | |
GISS-E2-H-CC | × | × | ||
GISS-E2-H | × | × | × | × |
GISS-E2-R-CC | × | × | ||
GISS-E2-R | × | × | × | × |
HadGEM2-AO | × | × | × | × |
INM-CM4 | × | × | ||
IPSL-CM5A-LR | × | × | × | × |
IPSL-CM5A-MR | × | × | × | × |
IPSL-CM5B-LR | × | × | ||
MIROC5 | × | × | × | × |
MIROC-ESM-CHEM | × | × | × | × |
MIROC-ESM | × | × | × | × |
MRI-CGCM3 | × | × | × | × |
MRI-ESM1 | × | |||
NorESM1-ME | × | × | × | × |
NorESM1-M | × | × | × | × |
References
- Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2015; p. 155. ISBN 978-92-9169-143-2. [Google Scholar]
- Delworth, T.L.; Mahlman, J.D.; Knutson, T.R. Changes in Heat Index Associated with CO2-induced Global Warming. Clim. Chang. 1999, 43, 369–386. [Google Scholar] [CrossRef]
- Dunne, J.P.; Stouffer, R.J.; John, J.G. Reductions in labour capacity form heat stress under climate warming. Nat. Clim. Chang. 2013, 3, 563–566. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 7243. Hot Environments—Estimation of the Heat Stress on Working Man, Based on the WBGT-Index (Wet-Bulb Globe Temperature); International Organization for Standardization: Geneva, Switzerland, 1989. [Google Scholar]
- International Organization for Standardization. ISO 7243:2017(E). Ergonomics of the Thermal Environment—Assessment of Heat Stress Using the WBGT (Wet-Bulb Globe Temperature) Index; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Kjellstrom, T.; Briggs, D.; Freyberg, C.; Lemke, B.; Otto, M.; Hyatt, O. Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of Global Climate Change Impacts. Annu. Rev. Public Health 2016, 37, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, V.; Chinnadurai, J.S.; Lucas, R.A.I.; Kjellstrom, T. Occupational Heat Stress Profiles in Selected Workplaces in India. Int. J. Environ. Res. Public Health 2016, 13, 89. [Google Scholar] [CrossRef] [PubMed]
- Kjellstrom, T.; Holmer, I.; Lemke, B. Workplace heat stress, health and productivity—An increasing challenge for low and middle-income countries during climate change. Glob. Health Action 2009, 2, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Kjellstrom, T.; Kovats, S.; Lloyd, S.J.; Holt, T.; Tol, R.S.J. The direct impact of climate change on regional labour productivity. Int. Arch. Environ. Occup. Health 2009, 64, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Willett, K.M.; Sherwood, S. Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol. 2012, 32, 161–177. [Google Scholar] [CrossRef]
- Parsons, K. Heat Stress Standard ISO 7243 and its Global Application. Ind. Health 2006, 44, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Davies-Jones, R. An Efficient and Accurate Method for Computing the Wet-Bulb Temperature long Pseudoadiabats. Mon. Weather Rev. 2008, 136, 2764–2785. [Google Scholar] [CrossRef]
- Epstein, Y.; Moran, D.S. Thermal Comfort and the Heat Stress Indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Bolton, D. The computation of equivalent potential temperature. Mon. Weather Rev. 1980, 108, 1046–1053. [Google Scholar] [CrossRef]
- Wexler, A. Vapor Pressure Formulation for Water in Range 0 to 100 °C. A Revision. J. Res. Natl. Bur. Stand. 1976, 80A, 775–785. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, V.; O’Neill, B.C. Internally consistent combinations of SSP narrative elements. Clim. Chang. 2014, 122, 431–445. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; Jackson, R.B.; et al. Global Carbon Budget 2017. Earth Syst. Sci. Data 2018, 10, 405–448. [Google Scholar] [CrossRef]
- Masui, T.; Matsumoto, K.; Hijioka, Y.; Kinoshita, T.; Nozawa, T.; Ishiwatari, S.; Kato, E.; Shukla, P.R.; Yamagata, Y.; Kainuma, M. An emission pathway to stabilize at 6 W/m2 of radiative forcing. Clim. Chang. 2011, 109, 59–76. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. A RCP 4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 74–94. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Stehfest, E.; den Elzen, M.G.J.; Kram, T.; van Vliet, J.; Deetman, S.; Isaac, M.; Goldewijk, K.K.; Hof, A.; Beltran, A.M.; et al. RCP 2.6: Exploring the possibility to keep global mean temperature increase below 2 °C. Clim. Chang. 2011, 109, 95–116. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Forster, P.M.; Andrews, T.; Good, P.; Gregory, J.M.; Jackson, L.S.; Zelinka, M. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos. 2013, 118, 1139–1150. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 2001, 82, 247–267. [Google Scholar] [CrossRef]
- Gasparrini, A.; Gou, Y.; Sera, F.; MariaVicedo-Cabrera, A.; Huber, V.; Tong, S.; de Sousa Zanotti Stagliorio Coelho, M.; Nascimento Saldiva, P.H.; Lavigne, E.; Matus Correa, P.; et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Plan. Health 2017, 1, e360–e367. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, K.; Chen, X.; Jing, Y.; Ma, Z.; Bi, J.; Kinney, P.L. Heat and mortality for ischemic and hemorrhagic stroke in 12 cities of Jiangsu Province, China. Sci. Total Environ. 2017, 601–602, 271–277. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newth, D.; Gunasekera, D. Projected Changes in Wet-Bulb Globe Temperature under Alternative Climate Scenarios. Atmosphere 2018, 9, 187. https://doi.org/10.3390/atmos9050187
Newth D, Gunasekera D. Projected Changes in Wet-Bulb Globe Temperature under Alternative Climate Scenarios. Atmosphere. 2018; 9(5):187. https://doi.org/10.3390/atmos9050187
Chicago/Turabian StyleNewth, David, and Don Gunasekera. 2018. "Projected Changes in Wet-Bulb Globe Temperature under Alternative Climate Scenarios" Atmosphere 9, no. 5: 187. https://doi.org/10.3390/atmos9050187
APA StyleNewth, D., & Gunasekera, D. (2018). Projected Changes in Wet-Bulb Globe Temperature under Alternative Climate Scenarios. Atmosphere, 9(5), 187. https://doi.org/10.3390/atmos9050187