Next Article in Journal
A Review of Airborne Particulate Matter Effects on Young Children’s Respiratory Symptoms and Diseases
Previous Article in Journal
Correction: Koutsouris et al. Utilization of Global Precipitation Datasets in Data Limited Regions: A Case Study of Kilombero Valley, Tanzania. Atmosphere, 2017, 8, 246
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle
Atmosphere 2018, 9(4), 149; https://doi.org/10.3390/atmos9040149

The Impacts of Vegetation and Meteorological Factors on Aerodynamic Roughness Length at Different Time Scales

1
Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Olympic Village Science Park, W. Beichen Road, Beijing 100101, China
2
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
*
Author to whom correspondence should be addressed.
Received: 27 February 2018 / Revised: 26 March 2018 / Accepted: 10 April 2018 / Published: 16 April 2018
(This article belongs to the Section Biosphere/Hydrosphere/Land - Atmosphere Interactions)
Full-Text   |   PDF [22854 KB, uploaded 3 May 2018]   |  

Abstract

The aerodynamic roughness length (z0m) is a crucial parameter for reliably simulating turbulent exchanges between the land surface and the atmosphere. Due to the large number of input variables related to vegetation growth and aerodynamic conditions near the surface, estimating z0m precisely is difficult and, to date, no universal model has been established. Understanding the z0m changes in time series data and the relative contributions of vegetation indices and meteorological factors is important to providing a basis for modelling z0m. In this paper, the main meteorological factors that influence z0m in different seasons are presented based on data from three automatic weather stations (AWSs) that represent various land surface patterns in the Heihe river basin. A correlation analysis identified the dominant factors that influence z0m changes at half-hour and daily scales; then, a factor analysis was performed to identify the different contributions of vegetation indices and meteorological factors to z0m at different time scales. The results show that meteorological factors (wind speed, wind direction and atmospheric stability) are the main driving factors for z0m at the Arou and Guantan sites, which are situated in grassland and forest mountain areas, respectively, and that the vegetation indices have no impact on the z0m variations in these areas. In contrast, for the Daman site, situated in flat farmland, the vegetation indices are the primary driving factors, while meteorological factors such as wind speed and atmospheric stability are secondary factors, and wind direction has no significant influence. Finally, a detailed analysis was conducted to detect the relationships between half-hourly z0m measurements and three dominant meteorological factors. View Full-Text
Keywords: aerodynamic roughness length; Heihe river basin; factor analysis aerodynamic roughness length; Heihe river basin; factor analysis
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Yu, M.; Wu, B.; Zeng, H.; Xing, Q.; Zhu, W. The Impacts of Vegetation and Meteorological Factors on Aerodynamic Roughness Length at Different Time Scales. Atmosphere 2018, 9, 149.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Atmosphere EISSN 2073-4433 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top