Land-Use Regression Modelling of Intra-Urban Air Pollution Variation in China: Current Status and Future Needs
Abstract
:1. Introduction
2. Differences between Urban Areas in China and in Europe and North America
2.1. Pace of Urbanization
2.2. Magnitude and Density of Urbanization
2.3. Air Pollutant Emissions
2.4. Urban Topography
3. LUR Models for Chinese Urban Areas
3.1. Monitoring Data
3.2. Predictor Variables
3.3. Model Performance
4. Discussion
4.1. Modelled Pollutant
4.2. Data Availability/Accessibility Challenges
4.3. Temporal Variability
5. Future Research Needs
5.1. Improvement of Data Quality/Accessibility
5.2. Integration of Modelling Approaches and Fusion of Sensor Data
5.3. LUR Model Standards
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ministry of Environmental Protection. 2016 China Environmental Report. Available online: http://www.mep.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/201606/P020160602333160471955.pdf (accessed on 30 March 2018).
- Wang, S.; Hao, J. Air quality management in China: Issues, challenges, and options. J. Environ. Sci. 2012, 24, 2–13. [Google Scholar] [CrossRef]
- Chen, R.; Yin, P.; Meng, X.; Liu, C.; Wang, L.; Xu, X.; Ross, J.A.; Tse, L.A.; Zhao, Z.; Kan, H.; et al. Fine particulate air pollution and daily mortality: A nationwide analysis in 272 Chinese cities. Am. J. Respir. Crit. Care Med. 2017, 196, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Kan, H.; Chen, B.; Huang, W.; Bai, Z.; Song, G.; Pan, G. Association of particulate air pollution with daily mortality the China air pollution and health effects study. Am. J. Epidemiol. 2012, 175, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhang, Y.; Yang, C.; Zhao, Z.; Xu, X.; Kan, H. Acute effect of ambient air pollution on stroke mortality in the China air pollution and health effects study. Stroke 2013, 44, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Peng, R.D.; Meng, X.; Zhou, Z.; Chen, B.; Kan, H. Seasonal variation in the acute effect of particulate air pollution on mortality in the China Air Pollution and Health Effects Study (CAPES). Sci. Total Environ. 2013, 450, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ebenstein, A.; Greenstone, M.; Li, H. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc. Natl. Acad. Sci. USA 2013, 110, 12936–12941. [Google Scholar] [CrossRef] [PubMed]
- Kan, H.; Chen, B.; Hong, C. Health impact of outdoor air pollution in China: Current knowledge and future research needs. Environ. Health Perspect. 2009, 117, A187. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Brauer, M.; Cohen, A.; Burnett, R.T.; Liu, J.; Liu, Y.; Liang, R.; Wang, W.; Qi, J.; Wang, L.; et al. Long-term fine particulate matter exposure and nonaccidental and cause-specific mortality in a large national cohort of Chinese men. Environ. Health Perspect. 2017, 125. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environmental Protection. Ambient Air Quality Standards. 2012. Available online: http://210.72.1.216:8080/gzaqi/Document/gjzlbz.pdf (accessed on 3 March 2017).
- (World Health Organization) WHO. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; WHO: Copenhagen, Denmark, 2006; ISBN 978-92-890-2192-0. [Google Scholar]
- Xie, X.; Semanjski, I.; Gautama, S.; Tsiligianni, E.; Deligiannis, N.; Rajan, R.T.; Pasveer, F.; Philips, W. A review of urban air pollution monitoring and exposure assessment methods. ISPRS Int. J. Geo-Inf. 2017, 6, 389. [Google Scholar] [CrossRef]
- Basagaña, X.; Rivera, M.; Aguilera, I.; Agis, D.; Bouso, L.; Elosua, R.; Foraster, M.; de Nazelle, A.; Nieuwenhuijsen, M.; Vila, J.; et al. Effect of the number of measurement sites on land use regression models in estimating local air pollution. Atmos. Environ. 2012, 54, 634–642. [Google Scholar] [CrossRef]
- Briggs, D.J.; Collins, S.; Elliott, P.; Fischer, P.; Kingham, S.; Lebret, E.; Pryl, K.; Van Reeuwijk, H.; Smallbone, K.; Van Der Veen, A. Mapping urban air pollution using GIS: A regression-based approach. Int. J. Geogr. Inf. Sci. 1997, 11, 699–718. [Google Scholar] [CrossRef]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. China Statistical Yearbook 2016. Available online: http://www.stats.gov.cn/tjsj/ndsj/2016/indexeh.htm (accessed on 17 November 2017).
- National Bureau of Statistics of China. China Statistical Yearbook 2012. Available online: http://www.stats.gov.cn/tjsj/ndsj/2012/indexeh.htm (accessed on 17 November 2017).
- Qiu, J. Megacities pose serious health challenge. Nat. News 2012. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. National Data—National Bureau of Statistics of China. Available online: http://data.stats.gov.cn/english/easyquery.htm?cn=C01 (accessed on 20 January 2018).
- United Nations. The World’s Cities in 2016. Available online: http://www.un.org/en/development/desa/population/publications/pdf/urbanization/the_worlds_cities_in_2016_data_booklet.pdf (accessed on 25 January 2018).
- Demographia. World Urban Areas. Available online: http://www.demographia.com/db-worldua.pdf (accessed on 25 January 2018).
- He, H.; Yang, L. China’s Stage 6 Emission Standard for New Light-Duty Vehicles (Final Rule). Available online: https://www.theicct.org/sites/default/files/publications/China-LDV-Stage-6_Policy-Update_ICCT_20032017_vF_corrected.pdf (accessed on 26 January 2018).
- Jin, Y.; Andersson, H.; Zhang, S. Air pollution control policies in China: A retrospective and prospects. Int. J. Environ. Res. Public. Health 2016, 13. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Wu, Y.; Hao, J.; Pang, Y.; Ma, Y.; Li, Y.; Li, B.; Bao, X. Fuel quality management versus vehicle emission control in China, status quo and future perspectives. Energy Policy 2015, 79, 87–98. [Google Scholar] [CrossRef]
- Center for Earth System Science. MEIC Model. Available online: http://www.meicmodel.org/ (accessed on 27 February 2017).
- Gabel, J.; Shehadi, A.; Ursini, S.; Gerometta, M. CTBUH Year in Review: Tall Trends of 2016; The Council on Tall Buildings and Urban Habitat (CTBUH): Chicago, IL, USA, 2016; Available online: http://www.skyscrapercenter.com/research/CTBUH_ResearchReport_2016YearInReview.pdf (accessed on 1 January 2018).
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- EPA. Environmental Protection Department of Anhui Province. Available online: http://www.aepb.gov.cn/pages/Aepb15_SJZX_List.aspx?CityCode=340100&LX=5 (accessed on 24 November 2017).
- EPW. Environmental Protection Department of Wuhan. Available online: http://www.whepb.gov.cn/viewAirDarlyForestWaterInfohistory.jspx (accessed on 24 November 2017).
- EPG. Environmental Protection of Guangdong Province. Available online: http://www.gdep.gov.cn/hjjce/kqjc/ (accessed on 24 November 2017).
- Ho, C.-C.; Chan, C.-C.; Cho, C.-W.; Lin, H.-I.; Lee, J.-H.; Wu, C.-F. Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmos. Environ. 2015, 104, 256–263. [Google Scholar] [CrossRef]
- Lee, J.-H.; Wu, C.-F.; Hoek, G.; de Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C.-C. Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population. Sci. Total Environ. 2014, 472, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Brauer, M.; Wong, P.; Tang, R.; Tsui, T.H.; Choi, C.; Cheng, W.; Lai, P.-C.; Tian, L.; Thach, T.-Q.; et al. Land use regression modelling of air pollution in high density high rise cities: A case study in Hong Kong. Sci. Total Environ. 2017, 592, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, W.; Chen, Z.; Zeng, G.; Hu, C.; León, T.; Liang, J.; Huang, G.; Gao, Z.; Li, Z.; et al. The application of semicircular-buffer-based land use regression models incorporating wind direction in predicting quarterly NO2 and PM10 concentrations. Atmos. Environ. 2015, 103, 18–24. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Chen, Z.; Zeng, G.; León, T.; Liang, J.; Huang, G.; Gao, Z.; Jiao, S.; He, X.; et al. Land use regression models coupled with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha, China. Atmos. Environ. 2015, 116, 272–280. [Google Scholar] [CrossRef]
- Shi, Y.; Lau, K.K.-L.; Ng, E. Developing street-level PM2.5 and PM10 land use regression models in high-density Hong Kong with urban morphological factors. Environ. Sci. Technol. 2016, 50, 8178–8187. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lau, K.K.-L.; Ng, E. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment. Environ. Res. 2017, 157, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Du, S.-Y.; Bai, Z.-P.; Kong, S.-F.; Yan, Y.; Bin, H.; Han, D.-W.; Li, Z.-Y. Application of land use regression for estimating concentrations of major outdoor air pollutants in Jinan, China. J. Zhejiang Univ.-Sci. A 2010, 11, 857–867. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Peng, J.; Li, W.; Xu, G.; Dong, C. Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China. Environ. Sci. Pollut. Res. 2015, 22, 7045–7061. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zheng, Y.; Geng, G.; Liu, H.; Man, H.; Lv, Z.; He, K.; de Hoogh, K. Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China. Environ. Pollut. 2017, 226, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Brunekreef, B. ESCAPE Exposure-manual. Available online: http://www.escapeproject.eu/manuals/ESCAPE_Exposure-manualv9.pdf (accessed on 29 June 2017).
- Huang, L.; Zhang, C.; Bi, J. Development of land use regression models for PM2.5, SO2, NO2 and O3 in Nanjing, China. Environ. Res. 2017, 158, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-F.; Lin, H.-I.; Ho, C.-C.; Yang, T.-H.; Chen, C.-C.; Chan, C.-C. Modeling horizontal and vertical variation in intraurban exposure to PM2.5 concentrations and compositions. Environ. Res. 2014, 133, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-D.; Chen, Y.-C.; Pan, W.-C.; Zeng, Y.-T.; Chen, M.-J.; Guo, Y.L.; Lung, S.-C.C. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environ. Pollut. 2017, 224, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Isakov, V.; Touma, J.S.; Mukerjee, S.; Özkaynak, H. Evaluation of land-use regression models used to predict air quality concentrations in an urban area. Atmos. Environ. 2010, 44, 3660–3668. [Google Scholar] [CrossRef]
- Wang, M.; Beelen, R.; Eeftens, M.; Meliefste, K.; Hoek, G.; Brunekreef, B. Systematic evaluation of land use regression models for NO2. Environ. Sci. Technol. 2012, 46, 4481–4489. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Reis, S.; Lin, C.; Heal, M.R. Effect of monitoring network design on land use regression models for estimating residential NO2 concentration. Atmos. Environ. 2017, 149, 24–33. [Google Scholar] [CrossRef]
- Lin, C.; Masey, N.; Wu, H.; Jackson, M.; Carruthers, D.J.; Reis, S.; Doherty, R.M.; Beverland, I.J.; Heal, M.R. Practical field calibration of portable monitors for mobile measurements of multiple air pollutants. Atmosphere 2017, 8, 231. [Google Scholar] [CrossRef]
- Chen, L.; Shi, M.; Li, S.; Bai, Z.; Wang, Z. Combined use of land use regression and BenMAP for estimating public health benefits of reducing PM2.5 in Tianjin, China. Atmos. Environ. 2017, 152, 16–23. [Google Scholar] [CrossRef]
- Anand, J.S.; Monks, P.S. Estimating daily surface NO2 concentrations from satellite data—A case study over Hong Kong using land use regression models. Atmos. Chem. Phys. 2017, 17, 8211–8230. [Google Scholar] [CrossRef]
- Xu, G.; Jiao, L.; Zhao, S.; Yuan, M.; Li, X.; Han, Y.; Zhang, B.; Dong, T. Examining the impacts of land use on air quality from a spatio-temporal perspective in Wuhan, China. Atmosphere 2016, 7, 62. [Google Scholar] [CrossRef]
- Meng, X.; Fu, Q.; Ma, Z.; Chen, L.; Zou, B.; Zhang, Y.; Xue, W.; Wang, J.; Wang, D.; Kan, H.; et al. Estimating ground-level PM10 in a Chinese city by combining satellite data, meteorological information and a land use regression model. Environ. Pollut. 2016, 208, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Henderson, B.H.; Wang, D.; Yang, X.; Peng, Z. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in city of Shanghai, China. Sci. Total Environ. 2016, 565, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Liu, J.; He, Z. Self-adaptive revised land use regression models for estimating PM2.5 concentrations in Beijing, China. Sustainability 2016, 8, 786. [Google Scholar] [CrossRef]
- Gong, J.; Hu, Y.; Liu, M.; Bu, R.; Chang, Y.; Bilal, M.; Li, C.; Wu, W.; Ren, B. Land use regression models using satellite aerosol optical depth observations and 3D building data from the central cities of Liaoning Province, China. Pol. J. Environ. Stud. 2016, 25, 1015–1026. [Google Scholar] [CrossRef]
- Meng, X.; Chen, L.; Cai, J.; Zou, B.; Wu, C.-F.; Fu, Q.; Zhang, Y.; Liu, Y.; Kan, H. A land use regression model for estimating the NO2 concentration in Shanghai, China. Environ. Res. 2015, 137, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Y.; Li, P.; Ji, Y.; Kong, S.; Li, Z.; Bai, Z. A land use regression model incorporating data on industrial point source pollution. J. Environ. Sci. 2012, 24, 1251–1258. [Google Scholar] [CrossRef]
- Yu, H.-L.; Wang, C.-H.; Liu, M.-C.; Kuo, Y.-M. Estimation of fine particulate matter in Taipei using land use regression and Bayesian maximum entropy methods. Int. J. Environ. Res. Public Health 2011, 8, 2153–2169. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Bai, Z.; Kong, S.; Han, B.; You, Y.; Ding, X.; Du, S.; Liu, A. A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. J. Environ. Sci. 2010, 22, 1364–1373. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, G.Z.; Kumar, N.; Shi, G. Gaming in air pollution data? Lessons from China. BE J. Econ. Anal. Policy 2012, 12. [Google Scholar] [CrossRef]
- Ghanem, D.; Zhang, J. “Effortless Perfection:” Do Chinese cities manipulate air pollution data? J. Environ. Econ. Manag. 2014, 68, 203–225. [Google Scholar] [CrossRef]
- Duncan, B.N.; Prados, A.I.; Lamsal, L.N.; Liu, Y.; Streets, D.G.; Gupta, P.; Hilsenrath, E.; Kahn, R.A.; Nielsen, J.E.; Beyersdorf, A.J.; et al. Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos. Environ. 2014, 94, 647–662. [Google Scholar] [CrossRef]
- De Hoogh, K.; Gulliver, J.; van Donkelaar, A.; Martin, R.V.; Marshall, J.D.; Bechle, M.J.; Cesaroni, G.; Pradas, M.C.; Dedele, A.; Eeftens, M.; et al. Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data. Environ. Res. 2016, 151, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kloog, I.; Nordio, F.; Coull, B.A.; Schwartz, J. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic States. Environ. Sci. Technol. 2012, 46, 11913–11921. [Google Scholar] [CrossRef] [PubMed]
- Kloog, I.; Koutrakis, P.; Coull, B.A.; Lee, H.J.; Schwartz, J. Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos. Environ. 2011, 45, 6267–6275. [Google Scholar] [CrossRef]
- Novotny, E.V.; Bechle, M.J.; Millet, D.B.; Marshall, J.D. National satellite-based land-use regression: NO2 in the United States. Environ. Sci. Technol. 2011, 45, 4407–4414. [Google Scholar] [CrossRef] [PubMed]
- Vienneau, D.; de Hoogh, K.; Bechle, M.J.; Beelen, R.; van Donkelaar, A.; Martin, R.V.; Millet, D.B.; Hoek, G.; Marshall, J.D. Western European land use regression incorporating satellite- and ground-based measurements of NO2 and PM10. Environ. Sci. Technol. 2013, 47, 13555–13564. [Google Scholar] [CrossRef] [PubMed]
- Ziemba, L.D.; Lee Thornhill, K.; Ferrare, R.; Barrick, J.; Beyersdorf, A.J.; Chen, G.; Crumeyrolle, S.N.; Hair, J.; Hostetler, C.; Hudgins, C.; et al. Airborne observations of aerosol extinction by in situ and remote-sensing techniques: Evaluation of particle hygroscopicity. Geophys. Res. Lett. 2013, 40, 417–422. [Google Scholar] [CrossRef]
- OMI Team. Ozone Monitoring Instrument (OMI) Data User’s Guide. Available online: https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/OMI/3.3_ScienceDataProductDocumentation/3.3.2_ProductRequirements_Designs/README.OMI_DUG.pdf (accessed on 10 January 2018).
- Mölter, A.; Lindley, S.; de Vocht, F.; Simpson, A.; Agius, R. Modelling air pollution for epidemiologic research—Part I: A novel approach combining land use regression and air dispersion. Sci. Total Environ. 2010, 408, 5862–5869. [Google Scholar] [CrossRef] [PubMed]
- Cyrys, J.; Eeftens, M.; Heinrich, J.; Ampe, C.; Armengaud, A.; Beelen, R.; Bellander, T.; Beregszaszi, T.; Birk, M.; Cesaroni, G. Others Variation of NO2 and NOx concentrations between and within 36 European study areas: Results from the ESCAPE study. Atmos. Environ. 2012, 62, 374–390. [Google Scholar] [CrossRef]
- Lin, C.; Feng, X.; Heal, M.R. Temporal persistence of intra-urban spatial contrasts in ambient NO2, O3 and Ox in Edinburgh, UK. Atmos. Pollut. Res. 2016, 7, 734–741. [Google Scholar] [CrossRef]
- Wu, H.; Reis, S.; Lin, C.; Beverland, I.; Heal, M. Identifying drivers for the intra-urban spatial variability of airborne particulate matter components and their interrelationships. Atmos. Environ. 2015, 112, 306–316. [Google Scholar] [CrossRef] [Green Version]
- China National Environmental Monitoring Centre. Air Quality Report of 74 Cities in November 2016. Available online: http://www.cnemc.cn/publish/totalWebSite/news/news_50607.html (accessed on 26 February 2017).
- Reis, S.; Seto, E.; Northcross, A.; Quinn, N.W.T.; Convertino, M.; Jones, R.L.; Maier, H.R.; Schlink, U.; Steinle, S.; Vieno, M.; et al. Integrating modelling and smart sensors for environmental and human health. Environ. Model. Softw. 2015, 74, 238–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pollutant | Grade a | Annual Mean (µg/m3) | 24-h Mean (µg/m3) | 1-h Mean (µg/m3) |
---|---|---|---|---|
SO2 | I | 20 | 50 | 150 |
II | 60 | 150 | 500 | |
WHO | 20 | 500 b | ||
NO2 | I | 40 | 80 | 200 |
II | 40 | 80 | 200 | |
WHO | 40 | 200 | ||
CO c | I | 4 | 10 | |
II | 4 | 10 | ||
O3 | I | 100 d | 160 | |
II | 160 d | 200 | ||
WHO | 100 d | |||
PM10 | I | 40 | 50 | |
II | 70 | 150 | ||
WHO | 20 | 50 | ||
PM2.5 | I | 15 | 35 | |
II | 35 | 75 | ||
WHO | 10 | 25 |
Input | Detailed Components |
---|---|
pollutant data | regularity monitoring data |
purpose-designed campaign | |
land-use classification | residential land |
industrial land | |
urban green space | |
street morphology (aspect ratio) | |
traffic data | road network by road classification |
numbers and types of vehicles | |
railways | |
census data | population density |
household density | |
meteorology | wind field |
temperature | |
topography | altitude |
slope angle | |
emission data | emission inventory |
remote sensing data | satellite data |
Reference | Study Area | Area (km2) | Population (million) | Type of Sites Used | No. of Monitoring Sites | Pollutants | Sampling Period 1 | Predictor Variables Collected |
---|---|---|---|---|---|---|---|---|
Yang et al., 2017 [41] | PRD | 56,000 | 57.6 | regulatory monitoring sites | 69 | NO2, PM2.5 | 01/12/2013 to 30/11/2014 | geographic character, land use type, traffic indicator, urbanization indicator, wind field, satellite remote sensing, air quality model |
Wu et al., 2017 [45] | Taipei Metropolitan area | 2327 | 6.6 | regulatory monitoring sites | 17 | PM2.5 | 2006 to 2012 | annual average of SO2 and NOx, land use type, land mark, road network, Normalized Difference Vegetation Index (NDVI) |
Shi et al., 2017 [38] | Hong Kong | 1100 | >7 | regulatory monitoring sites | 15 | CO, NO2, NOx, O3, SO2, PM2.5, PM10 | 2011 to 2015 | traffic network/volume, urban land use, population density, geo-location and physical geography of monitoring points, wind availability |
Lee et al., 2017 [34] | Hong Kong | 1104 | 7.24 | sampling campaign | 43, 97, 63, 84 | NO, NO2, PM2.5, BC | 24/04/2014 to 30/05/2014, 18/11/2014 to 06/10/2015 | annual average traffic density, road length, traffic loading, urban build-up, land use, point feature, value extracted at point, distance |
Huang et al., 2017 [43] | Nanjing | 6596 | 8.27 | regulatory monitoring sites | 9 | PM2.5, SO2, NO2, O3 | 01/01/2013 to 31/12/2013 | industrial emission, population density, topography, meteorological variables, road network, land use |
Chen et al., 2017 [50] | Tianjin | 11,760 | >12 | regulatory monitoring sites | 28 | PM2.5 | 2014 | population, land use, road network, distance to coast |
Anand and Monks, 2017 [51] | Hong Kong | 1104 | 7.35 | regulatory monitoring sites | 11 | NO2 | 2005 to 2015 | vehicle emissions, industrial emissions, residential emissions, dry deposition, ocean deposition, surface elevation, surface temperature, wind advection, location |
Xu et al., 2016 [52] | Wuhan | 8494 | >10 | regulatory monitoring sites | 9 | SO2, NO2, PM10 | 2007 to 2014 | land use, socio-economic development, energy use, road density, industry emission, meteorological condition |
Shi et al., 2016 [37] | Hong Kong | 1104 | 7.35 | mobile | 222 | PM2.5, PM10 | 14 days May to September 2015 | traffic and transport, land use, physical geography, population, urban/building morphology |
Meng et al., 2016 [53] | Shanghai | 6300 | 23 | regulatory monitoring sites | 28 | PM10 | 2008 | land use, road network, emission, population |
Liu et al., 2016 [54] | Shanghai | 6341 | 23.8 | regulatory monitoring sites | 53 | PM2.5, NO2 | 2014 | land use, road networks, distance to the ocean, longitude and latitude, distance to major air pollution sources, suburban and urban area |
Hu et al., 2016 [55] | Beijing | 16,411 | 21.69 | regulatory monitoring sites | 35 | PM2.5 | 2014 | land use, terrain, transportation, population, polluting enterprises, points of interest, distance to the city center, buildings, natural landscape |
Gong et al., 2016 [56] | Liaoning Province | 145,900 | 42.21 | regulatory monitoring sites | 34 | SO2, NO2, PM10 | 2013 | canyon indicator, elevation, normalized difference vegetative index, distance to air pollutant point source emissions, road density, population density, Gross Domestic Product |
Wu et al., 2015 [40] | Beijing | 16,411 | 21.69 | regulatory monitoring sites | 35 | PM2.5 | 04/03/2013 to 05/03/2014 | road length, land cover, population density, catering services, bus stop density, intersection density, others |
Meng et al., 2015 [57] | Shanghai | 6300 | 23 | regulatory monitoring sites | 38 | NO2 | 2008–2011 | population, road network, land use, industrial emissions, coastline |
Liu et al., 2015 [36] | Changsha | 1917 | 7 | sampling campaign (regulatory monitoring sites) | 74 (9), 36 (9) | NO2, PM10 | 14 days in each season of 2010 | road network, land use, meteorology |
Li et al., 2015 [35] | Changsha | 1917 | 7 | sampling campaign | 80, 40 | NO2, PM10 | 14 days in each season | road length, land use, green space, water area |
Ho et al., 2015 [32] | Taipei Metropolitan area | 2327 | 6.5 | sampling campaign | 25 | PM2.5, Si, S, Ti, Mn, Fe, Ni, Cu, Zn | 01/2010 to 10/2010 | land use, road network, floor level, population |
Wu et al., 2014 [44] | Kaohsiung City | 2952 | 2.27 | sampling campaign | 29 | PM2.5, Si, S, Ti, Mn, Fe, Ni, Cu, Zn | 03/2011 to 12/2011 | land use, road network, sampling height, population |
Lee et al., 2014 [33] | Taipei Metropolitan area | 786 | 6.5 | sampling campaign | 40 | NOx, NO2 | 10/2009 to 09 2010 | road length, land use, population and household density, altitude |
Chen et al., 2012 [58] | Tianjin | 11,920 | >10 | regulatory monitoring sites | 30 | SO2, NO2, PM10 | 2006 | road network, traffic volume, land use, population density, meteorology, physical variables, pollution sources |
Yu et al., 2011 [59] | Taipei | 271.8 | 2.7 | regulatory monitoring sites | 18 | PM2.5 | 2005 to 2007 | land use, road network |
Chen et al., 2010b [39] | Jinan | 8177 | 60.485 | 14 | SO2, NO2, PM10 | 01/08/2008 to 31/07/2009 | traffic, land use, population density, physical condition, meteorological condition, others | |
Chen et al., 2010a [60] | Tianjin | 11,920 | >10 | regulatory monitoring sites | 30 | NO2, PM10 | heating season: 15/11/2006 to 15/03/2006; non heating: 16/03/2006 to 14/11/2006 | major roads, land use, population, meteorological variables and distance to sea |
Reference | Study Area | Predictor Variables in Final Model (Buffer in Unit m) | Adjusted R2 of Model | RMSE (µg/m3) | R2 Validation | RMSE Validation (µg/m3) |
---|---|---|---|---|---|---|
Yang et al., 2017 [41] | PRD | NO2 emission from traffic (2000), urban road (2000), latitude | 0.56 | 7.208 | ||
Shi et al., 2017 [38] | Hong Kong | skyview factor (100), private and government vehicles (750) | 0.871 | 8.655 | ||
Lee et al., 2017 [34] | Hong Kong | express way length (1000), main roads (50), elevated roads (5000), open area (300) | 0.43 | 27.7 | 0.39 | 29.5 |
Huang et al., 2017 [43] | Nanjing | residential (5000), population (3000) | 0.87 | 2.69 | 0.7 | 2.13 |
Anand and Monks, 2017 [51] | Hong Kong | tertiary road length (300, 500, 3500, 7000), longitude | 0.419 | 0.419 | 19.1 | |
Xu et al., 2016 [52] | Wuhan | built-up land (4000), vegetation (1000), road density (2000), precipitation | 0.575 | 5.51 1 | ||
Liu et al., 2016 [54] | Shanghai | residential (1000), distance to coast, industrial (3000), urban or not urban, highway intensity (1000) | 0.621 | |||
Gong et al., 2016 [56] | Liaoning | Gross Domestic Product, population in a buffer, density of major roads in a buffer (200–2000), distance to the nearest industrial emission | 0.42 | 6.9 | 0.37 | 8.42 |
Meng et al., 2015 [57] 2 | Shanghai | major road length (2000), count of other industrial sources (10,000), agricultural land area (5000), population (in cell of 1000 × 850) | 0.82 | 0.75 | 4.46 | |
Liu et al., 2015 [36] | Changsha | major road (1200), residential land (600), residential land (1200), public facilities land (1200), green space (300) | 0.51 | 7.10 | 0.61 | |
Li et al., 2015 [35] | Changsha | total length of urban expressways and freeways (300), residential (1200), total area of commercial, recreation, governmental and education lands (1200) | 0.55 | 0.51 | ||
Lee et al., 2014 [33] | Taipei | natural area (500), major road length (25), low density residential area (500), urban green area (100) | 0.74 | 6.36 | 0.63 | |
Chen et al., 2012 [58] | Tianjin | point source index (10,000–5000), line source index, distance to expressway, greenness | 0.89 | 0.18 | ||
Chen et al., 2010 [39] | Jinan | length of major roads (2000), distance to express way, area of residential land (2000) | 0.64 | |||
Chen et al., 2010 [60] 3 | Tianjin | major roads (2000), residence (500), population density, wind index | 0.74 | 0.012 4 |
Reference | Study Area | Pollutants | Predictor Variables in Final Model (Buffer in Unit m) | Adjusted R2 of Model | RMSE (µg/m3) | R2 Validation | RMSE Validation (µg/m3) |
---|---|---|---|---|---|---|---|
Yang et al., 2017 [41] | PRD | PM2.5 | latitude, longitude, artificial land (2000), water land (200) | 0.884 | 0.872 | 2.754 | |
Wu et al., 2017 [45] | Taipei Metropolitan area | PM2.5 | concentration of NOx, concentrations of SO2, length of local roads (750), number of Chinese restaurants (1750), number of temples (750), average NDVI (1750) | 0.89 | 1.66 | 0.83 | 1.58 |
Shi et al., 2017 [38] | Hong Kong | PM2.5 | commercial (300), public transport vehicles (50) | 0.671 | 2.62 | ||
Shi et al., 2017 [38] 1 | Hong Kong | PM2.5 summer | commercial (300), public transport vehicles (100) | 0.771 | 2.714 | ||
Shi et al., 2017 [38] 2 | Hong Kong | PM2.5 winter | primary road (400), tertiary road (1000), open space (100) | 0.422 | 3.758 | ||
Shi et al., 2017 [38] | Hong Kong | PM10 | sky view factor, public transport vehicles (50), frontal area annual (200) | 0.854 | 3.544 | ||
Shi et al., 2017 [38] 3 | Hong Kong | PM10 summer | elevation above Hong Kong Principal Datum, public transport vehicles (50) | 0.895 | 3.522 | ||
Shi et al., 2017 [38] 4 | Hong Kong | PM10 winter | count of bus stops (50), open space (100) | 0.634 | 5.138 | ||
Lee et al., 2017 [34] | Hong Kong | PM2.5 | expressway (25), distance to Shenzhen, car park density (1000), car park density (25), government land use (100), industrial land use (25) | 0.54 | 4 | 0.43 | 4.7 |
Huang et al., 2017 [43] | Nanjing | PM2.5 | road length (300), residential (100), wind index, | 0.72 | 2.1 | 0.38 | 2.58 |
Chen et al., 2017 [50] | Tianjin | PM2.5 | population density, road length (1000), industrial area (2000), distance to the coast | 0.73 | 6.38 | ||
Xu et al., 2016 [52] | Wuhan | PM10 | water bodies (1000), Gross Domestic Product, energy consumption, industrial waste gas emission, precipitation | 0.594 | 7.35 5 | ||
Shi et al., 2016 [37] | Hong Kong | PM2.5 | primary road line density (300), ordinary road line density (400), traffic volume of public transport vehicles (500), frontal area index (400) | 0.633 | 6.516 | 0.613 | |
Shi et al., 2016 [37] | Hong Kong | PM10 | primary road line density (300), traffic volume of private and government vehicles (200), government land use area (1000), frontal area index (400) | 0.707 | 6.948 | 0.692 | |
Meng et al., 2016 [53] | Shanghai | PM10 | distance to the coast, emission (7000), green space (1000), road lengths (5000) | 0.8 | 4.2 | 0.73 | 5 |
Liu et al., 2016 [54] | Shanghai | PM2.5 | longitude, distance to the coast, highway intensity (300), water (500), industrial (300) | 0.877 | |||
Hu et al., 2016 [55] | Beijing | PM2.5 | crop land (1000), forest (5000), water (3000), elevation (5000), railway and subway (2000), distance to city center | 0.679 | |||
Gong et al., 2015 [56] | Liaoning Province | PM10 | Gross Domestic Product, elevation, distance to the nearest industrial emissions | 0.34 | 23.1 | 0.33 | 23.63 |
Wu et al., 2015 [40] | Beijing | PM2.5 | natural vegetation (3000), major roads (1000), water body (50) | 0.58 | 9.3 | ||
Liu et al., 2015 [36] | Changsha | PM10 | expressway (1200), residential land (900), residential land (1200), industrial land (1200), public facilities land (1200), water area (1200) | 0.62 | 9.00 | 0.58 | |
Li et al., 2015 [35] | Changsha | PM10 | total length of urban expressways and freeways downwind semicircular buffer (600), residential upwind semicircular buffer (300), total area of commercial, recreation, governmental and education lands downwind semicircular buffer (600) | 0.51 | 5.6 | 0.60 | |
Ho et al., 2015 [32] | Taipei Metropolitan area | PM2.5 | floor level, total length of major roads (50), total length of all road segments (50), the surface area of industry (300) | 0.75 | 0.62 | ||
Wu et al., 2014 [44] | Kaohsiung City | PM2.5 | mid-level site, high-level site, total length of all major roads (500), total length of all roads (25), gravel plant (5000), agriculture (500) | 0.55 | 0.28 | 11.48 | |
Chen et al., 2012 [58] | Tianjin | PM10 | population density, point source index (10,000–5000), line source index, distance to sea | 0.84 | 0.21 | ||
Yu et al., 2011 [59] | Taipe | PM2.5 | road (500–1000), forest (500–1000), industry (300–500), park (500–1000), railroad (0–50), government institutions (100–300), park (300–500), public equipment (100–300), bus (0–50), public equipment (100–300), port (500–1000) | 2.5685 6 | |||
Chen et al., 2010 [39] | Jinan | PM10 | area of residential land (1500), area of industrial land (1500), distance to sea | 0.19 | |||
Chen et al., 2010 [60] 7 | Tianjin | PM10 | major roads (2000), residential area (500), population density, wind speed | 0.72 | 0.010 8 | ||
Chen et al., 2010 [60] 9 | Tianjin | PM10 | major roads (1000), residential area (500), wind speed | 0.49 | 0.008 10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, B.; Heal, M.R.; Reis, S. Land-Use Regression Modelling of Intra-Urban Air Pollution Variation in China: Current Status and Future Needs. Atmosphere 2018, 9, 134. https://doi.org/10.3390/atmos9040134
He B, Heal MR, Reis S. Land-Use Regression Modelling of Intra-Urban Air Pollution Variation in China: Current Status and Future Needs. Atmosphere. 2018; 9(4):134. https://doi.org/10.3390/atmos9040134
Chicago/Turabian StyleHe, Baihuiqian, Mathew R. Heal, and Stefan Reis. 2018. "Land-Use Regression Modelling of Intra-Urban Air Pollution Variation in China: Current Status and Future Needs" Atmosphere 9, no. 4: 134. https://doi.org/10.3390/atmos9040134
APA StyleHe, B., Heal, M. R., & Reis, S. (2018). Land-Use Regression Modelling of Intra-Urban Air Pollution Variation in China: Current Status and Future Needs. Atmosphere, 9(4), 134. https://doi.org/10.3390/atmos9040134