Optimization of PM2.5 Estimation Using Landscape Pattern Information and Land Use Regression Model in Zhejiang, China
Abstract
:1. Introduction
2. Experiments
2.1. Investigated Regions and Monitoring Stations
2.2. Settings for LUR Model
2.2.1. Dependent Variable
2.2.2. Independent Variables
2.2.3. Model Development and Evaluation
3. Results and Discussion
3.1. LUR Model Construction
3.2. Cross Validation
3.3. Concentration Simulation
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Amini, H.; Taghavishahri, S.M.; Henderson, S.B.; Naddafi, K.; Nabizadeh, R.; Yunesian, M. Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran. Sci. Total Environ. 2014, 488, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Coker, E.; Ghosh, J.; Jerrett, M.; Gomez-Rubio, V.; Beckerman, B.; Cockburn, M.; Liverani, S.; Su, J.; Li, A.; Kile, M.L. Modeling spatial effects of PM2.5 on term low birth weight in Los Angeles county. Environ. Res. 2015, 142, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Guldmann, J.M. Land-use regression panel models of NO2 concentrations in Seoul, Korea. Atmos. Environ. 2015, 107, 364–373. [Google Scholar] [CrossRef]
- Lee, M.; Brauer, M.; Wong, P.; Tang, R.; Tsui, T.H.; Choi, C.; Wei, C.; Lai, P.C.; Tian, L.; Thach, T.Q. Land use regression modelling of air pollution in high density high rise cities: A case study in Hong Kong. Sci. Total Environ. 2017, 592, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Chen, L.; Cai, J.; Zou, B.; Wu, C.F.; Fu, Q.; Zhang, Y.; Liu, Y.; Kan, H. A land use regression model for estimating the NO2 concentration in Shanghai, China. Environ. Res. 2015, 137, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Fu, Q.; Ma, Z.; Chen, L.; Zou, B.; Zhang, Y.; Xue, W.; Wang, J.; Wang, D.; Kan, H. Estimating ground-level PM(10) in a Chinese city by combining satellite data, meteorological information and a land use regression model. Environ. Pollut. 2016, 208, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Montagne, D.; Hoek, G.; Nieuwenhuijsen, M.; Lanki, T.; Pennanen, A.; Portella, M.; Meliefste, K.; Eeftens, M.; Ylituomi, T.; Cirach, M. Agreement of land use regression models with personal exposure measurements of particulate matter and nitrogen oxides air pollution. Environ. Sci. Technol. 2013, 47, 8523–8531. [Google Scholar] [CrossRef] [PubMed]
- Sabaliauskas, K.; Jeong, C.H.; Yao, X.; Reali, C.; Sun, T.; Evans, G.J. Development of a land-use regression model for ultrafine particles in Toronto, Canada. Atmos. Environ. 2015, 110, 84–92. [Google Scholar] [CrossRef]
- Shi, Y.; Lau, K.K.; Ng, E. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment. Environ. Res. 2017, 157, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Gage, E.A.; Cooper, D.J. Relationships between landscape pattern metrics, vertical structure and surface urban heat island formation in a Colorado suburb. Urban Ecosyst. 2017, 20, 1229–1238. [Google Scholar] [CrossRef]
- Jun-Hyun, K.; Gu, D.; Wonmin, S.; Sung-Ho, K.; Hwanyong, K.; Dong-Kun, L. Neighborhood landscape spatial patterns and land surface temperature: An empirical study on single-family residential areas in Austin, Texas. Int. J. Environ. Res. Public Health 2016, 13, 880. [Google Scholar]
- Li, Y.; Liu, G. Characterizing spatiotemporal pattern of land use change and its driving force based on GIS and landscape analysis techniques in Tianjin during 2000–2015. Sustainability 2017, 9, 894. [Google Scholar] [CrossRef]
- Xinliang, X.U.; Cai, H.; Qiao, Z.; Wang, L.; Jin, C.; Yaning, G.E.; Wang, L.; Fengjiao, X.U. Impacts of park landscape structure on thermal environment using quickbird and landsat images. Chin. Geogr. Sci. 2017, 27, 818–826. [Google Scholar]
- Yang, Y.; Li, Z.; Li, P.; Ren, Z.; Gao, H.; Wang, T.; Xu, G.; Yu, K.; Shi, P.; Tang, S. Variations in runoff and sediment in watersheds in loess regions with different geomorphologies and their response to landscape patterns. Environ. Earth Sci. 2017, 76, 517. [Google Scholar] [CrossRef]
- Weber, N.; Haase, D.; Franck, U. Zooming into temperature conditions in the city of Leipzig: How do urban built and green structures influence earth surface temperatures in the city? Sci. Total Environ. 2014, 496, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Bottalico, F.; Travaglini, D.; Chirici, G.; Garfì, V.; Giannetti, F.; Marco, A.D.; Fares, S.; Marchetti, M.; Nocentini, S.; Paoletti, E. A spatially-explicit method to assess the dry deposition of air pollution by urban forests in the city of Florence, Italy. Urban For. Urban Green. 2017, 27, 221–234. [Google Scholar] [CrossRef]
- Liu, H.; Fang, C.; Zhang, X.; Wang, Z.; Bao, C.; Li, F. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. J. Clean. Prod. 2017, 165, 323–333. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Peng, J.; Li, W.; Xu, G.; Dong, C. Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China. Environ. Sci. Pollut. Res. Int. 2015, 22, 7045–7061. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Luo, Y.; Wan, N.; Zheng, Z.; Sternberg, T.; Liao, Y. Performance comparison of LUR and ok in PM2.5 concentration mapping: A multidimensional perspective. Sci. Rep. 2015, 5, 8698. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, W.; Liang, Z. Impact of land use on PM2.5 pollution in a representative city of middle China. Int. J. Environ. Res. Public Health 2017, 14, 462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Qi, Q.; Jiang, L.; Zhou, F.; Wang, J. Population exposure to PM2.5 in the urban area of Beijing. PLoS ONE 2013, 8, e63486. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.G.; Zawar-Reza, P. Intraurban-scale dispersion modelling of particulate matter concentrations: Applications for exposure estimates in cohort studies. Atmos. Environ. 2006, 40, 1053–1063. [Google Scholar] [CrossRef]
- Ho, C.C.; Chan, C.C.; Cho, C.W.; Lin, H.I.; Lee, J.H.; Wu, C.F. Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmos. Environ. 2015, 104, 256–263. [Google Scholar] [CrossRef]
- Lee, J.H.; Wu, C.F.; Hoek, G.; De, H.K.; Beelen, R.; Brunekreef, B.; Chan, C.C. Lur models for particulate matters in the Taipei metropolis with high densities of roads and strong activities of industry, commerce and construction. Sci. Total Environ. 2015, 514, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Zou, B.; Fang, X.; Luo, Y.; Wan, N.; Li, S. Land use regression modeling of PM2.5 concentrations at optimized spatial scales. Atmosphere 2016, 8, 1. [Google Scholar] [CrossRef]
- Mcgarigal, K.; Marks, B.J. FRAGSTATS: Spatial analysis program for quantifying landscape structure. Gen. Tech. Rep. 1995, 351. [Google Scholar] [CrossRef]
- Wu, J.; Xie, W.; Li, W.; Li, J. Effects of urban landscape pattern on PM2.5 pollution-a Beijing case study. PLoS ONE 2015, 10, e0142449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korek, M.; Johansson, C.; Svensson, N.; Lind, T.; Beelen, R.; Hoek, G.; Pershagen, G.; Bellander, T. Can dispersion modeling of air pollution be improved by land-use regression? An example from Stockholm, Sweden. J. Expo Sci. Environ. Epidemiol. 2017, 27, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Wu, C.F.; Hoek, G.; De, H.K.; Beelen, R.; Brunekreef, B.; Chan, C.C. Land use regression models for estimating individual NOX and NO2 exposures in a metropolis with a high density of traffic roads and population. Sci. Total Environ. 2015, 472, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Rivera, M.; Basagaña, X.; Aguilera, I.; Agis, D.; Bouso, L.; Foraster, M.; Medina-Ramón, M.; Pey, J.; Künzli, N.; Hoek, G. Spatial distribution of ultrafine particles in urban settings: A land use regression model. Atmos. Environ. 2012, 54, 657–666. [Google Scholar] [CrossRef]
- Grzywna, A.; Kamińska, A.; Bochniak, A. Analysis of spatial variability in the depth of the water table in grassland areas. Rocz. Ochr. Srodowiska 2016, 18, 291–302. [Google Scholar]
- Xiao, Y.; Gu, X.; Yin, S.; Shao, J.; Cui, Y.; Zhang, Q.; Niu, Y. Geostatistical interpolation model selection based on arcgis and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China. SpringerPlus 2016, 5, 425. [Google Scholar] [CrossRef] [PubMed]
- Jian, C.; Hong, J.; Bin, W.; Zhong, Y.X.; Zi, S.J.; Guo, M.Z.; Shu, Q.Y. Aerosol optical properties from Sun-photometric measurements in Hangzhou, China. Int. J. Remote Sens. 2012, 33, 2451–2461. [Google Scholar]
- Zhang, Y.; Zhang, H.; Deng, J.; Du, W.; Hong, Y.; Xu, L.; Qiu, Y.; Hong, Z.; Wu, X.; Ma, Q. Source regions and transport pathways of PM2.5 at a regional background site in east China. Atmos. Environ. 2017, 167, 202–211. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Wang, Y.; Liu, N.; Hong, Y. Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China. Atmos. Res. 2017, 198, 185–193. [Google Scholar] [CrossRef]
- Dons, E.; Poppel, M.V.; Kochan, B.; Wets, G.; Panis, L.I. Modeling temporal and spatial variability of traffic-related air pollution: Hourly land use regression models for black carbon. Atmos. Environ. 2013, 74, 237–246. [Google Scholar] [CrossRef]
- Zhao, H.; Che, H.; Zhang, X.; Ma, Y.; Wang, Y.; Wang, H.; Wang, Y. Characteristics of visibility and particulate matter (PM) in an urban area of northeast China. Atmos. Pollut. Res. 2013, 4, 427–434. [Google Scholar] [CrossRef]
- Liu, P.F.; Zhao, C.S.; Bel, T.G.; Hallbauer, E.; Nowak, A.; Ran, L.; Xu, W.Y.; Deng, Z.Z.; Ma, N.; Mildenberger, K. Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the north China plain. Atmos. Chem. Phys. 2011, 11, 3479–3494. [Google Scholar] [CrossRef]
- Liang, L.U.; Luo, G.; Zhao, S.T. Land use and land cover change on slope in Qiandongnan prefecture of southwest China. J. Mt. Sci. 2014, 11, 762–773. [Google Scholar]
- Eliasson, I. The use of climate knowledge in urban planning. Landsc. Urban Plan. 2000, 48, 31–44. [Google Scholar] [CrossRef]
- Marquez, L.O.; Smith, N.C. A framework for linking urban form and air quality. Environ. Model. Softw. 1999, 14, 541–548. [Google Scholar] [CrossRef]
- Cheng, S.; Lang, J.; Zhou, Y.; Han, L.; Wang, G.; Chen, D. A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2.5 pollution in Beijing, China. Atmos. Environ. 2013, 79, 308–316. [Google Scholar] [CrossRef]
- Song, Y.; Xie, Z.S.; Zeng, L.; Zheng, M.; Salmon, L.G.; Shao, M.; Slanina, S. Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos. Environ. 2006, 40, 1526–1537. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuang, G.; Wang, Y.; Han, L.; Guo, J.; Dan, M.; Zhang, W.; Wang, Z.; Hao, Z. The air-borne particulate pollution in Beijing—Concentration, composition, distribution and sources. Atmos. Environ. 2004, 38, 5991–6004. [Google Scholar] [CrossRef]
Landscape Pattern Index Category | Description (Within Each Buffer) | Buffer Distance (m) | Land Use Types | Variables Names (Example) |
---|---|---|---|---|
Class area (CA) | Total area of land cover types | 100, 300, 500, 800, 1000, 2000, 3000, 4000, 5000 | woodland, residence, industrial, commercial, urban greenery, transportation, agricultural, bare land, waters, roads | buffer-distance_land-use-type_landscape-pattern indexes (100_woodland_CA 300_residence_PLAND 500_industrial_LPI 800_commercial_ED 1000_urban greenery_PD 2000_transportation_CONTAG 3000_agricultural_SHDI 4000_bare land_SHEI) |
Percent of landscape (PLAND) | The percentage of area of different patch types | |||
Largest patch index (LPI) | Largest area of different patch types | |||
Edge density (ED) | The length of the unit area of different patch type | |||
Patch density (PD) | The number of different patch type of unit area | |||
Contagion index (CONTAG) | The degree of clustering or trend of extension of different patch type | |||
Shannon’s diversity index (SHDI) | The diversity of patch type | |||
Shannon’s evenness index (SHEI) | The degree of inhomogeneity of different patch |
Variables | Variables | Variables |
---|---|---|
Latitude | 5000_woodland_CA | 5000_residential_CA |
DEM | 500_woodland_CA | 1000_residential_CA |
Population density | 300_woodland_CA | 800_residential_CA |
Wind speed | 100_woodland_CA | 500_residential_CA |
Pressure | 5000_woodland_PLAND | 300_residential_CA |
Relative humidity | 500_woodland_PLAND | 5000_residential_PLAND |
Temperature | 300_woodland_PLAND | 1000_residential_PLAND |
Rainfall | 100_woodland_PLAND | 800_residential_PLAND |
5000_CONTAG | 1000_woodland_PD | 500_residential_PLAND |
5000_SHDI | 800_woodland_PD | 300_residential_PLAND |
5000_SHEI | 500_woodland_PD | 800_residential_PD |
4000_waters_LPI | 100_woodland_PD | 5000_residential_LPI |
5000_transportation_LPI | 5000_woodland_LPI | 800_residential_LPI |
5000_roads_CA | 100_woodland_LPI | 1000_residential_LPI |
500_roads_CA | 500_woodland_LPI | 5000_commercial_CA |
5000_roads_PLAND | 300_woodland_LPI | 5000_commercial_PLAND |
500_roads_PLAND | 2000_woodland_ED | 300_commercial_PD |
5000_roads_PD | 100_woodland_ED | 2000_commercial_PD |
4000_roads_LPI | 5000_agricultural_CA | 5000_commercial_PD |
2000_roads_LPI | 5000_agricultural_PLAND | 5000_commercial_ED |
800_roads_LPI | 1000_agricultural_PD | 5000_commercial_LPI |
5000_roads_ED | 5000_residential_ED |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Significance | |
---|---|---|---|---|---|
B | Std. Error | Beta | |||
Constant | 17.802 | 19.266 | 0.924 | 0.357 | |
Latitude | 4.202 | 0.357 | 0.498 | 11.775 | 0.000 |
Relative humidity | −1.257 | 0.215 | −0.265 | −5.854 | 0.000 |
5000_residential_CA | 0.003 | 0 | 0.317 | 6.383 | 0.000 |
5000_CONTAG | −0.155 | 0.038 | −0.183 | −4.068 | 0.000 |
4000_waters_LPI | −0.111 | 0.039 | −0.114 | −2.857 | 0.005 |
Adjust R square | 0.805 | F | 103.212 | Sig. | 0.000 |
RMSE | 3.420 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Significance | |
---|---|---|---|---|---|
B | Std. Error | Beta | |||
Constant | 38.062 | 22.921 | 1.661 | 0.099 | |
Latitude | 4.917 | 0.448 | 0.583 | 10.975 | 0.000 |
Relative humidity | −1.853 | 0.248 | −0.391 | −7.468 | 0.000 |
DEM | −0.014 | 0.006 | −0.127 | −2.244 | 0.027 |
Adjust R square | 0.681 | F | 73.342 | Sig. | 0.000 |
RMSE | 4.680 |
Cross-Validation Parameters | Ordinary Kriging for LUR-Based Data Mining | LUR-Based Ordinary Kriging | Ordinary Kriging | Data-Mining-Based Ordinary Kriging |
---|---|---|---|---|
RMSE | 3.512 | 3.571 | 4.067 | 4.055 |
Regression function | 8.009 + 0.809x | 7.715 + 0.819x | 8.252 + 0.798x | 9.409 + 0.772x |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Wu, H.; Chen, J.; Lin, X.; Lu, T. Optimization of PM2.5 Estimation Using Landscape Pattern Information and Land Use Regression Model in Zhejiang, China. Atmosphere 2018, 9, 47. https://doi.org/10.3390/atmos9020047
Yang S, Wu H, Chen J, Lin X, Lu T. Optimization of PM2.5 Estimation Using Landscape Pattern Information and Land Use Regression Model in Zhejiang, China. Atmosphere. 2018; 9(2):47. https://doi.org/10.3390/atmos9020047
Chicago/Turabian StyleYang, Shan, Haitian Wu, Jian Chen, Xintao Lin, and Ting Lu. 2018. "Optimization of PM2.5 Estimation Using Landscape Pattern Information and Land Use Regression Model in Zhejiang, China" Atmosphere 9, no. 2: 47. https://doi.org/10.3390/atmos9020047
APA StyleYang, S., Wu, H., Chen, J., Lin, X., & Lu, T. (2018). Optimization of PM2.5 Estimation Using Landscape Pattern Information and Land Use Regression Model in Zhejiang, China. Atmosphere, 9(2), 47. https://doi.org/10.3390/atmos9020047