Urban Air Quality in a Coastal City: Wollongong during the MUMBA Campaign
Abstract
:1. Introduction
- low background concentrations and boundary condition problems,
- influences from sea-breezes and local topology (that need to be correctly modelled);
- the interaction of marine aerosols with urban primary and secondary pollutants; and
- the interaction of biogenic volatile organics with urban pollutants.
2. Materials and Methods
2.1. The MUMBA Campaign
- ocean to the east:
- forest to the west (including a steep escarpment and forested region beyond);
- industrial complex to the south (at Port Kembla).
2.2. Emissions
2.3. Regional Air Quality Modelling Using C-CTM
3. Results
3.1. Criteria Pollutants during the MUMBA Campaign
3.2. Traffic and Other Urban Influences
4. Discussion
4.1. Comparison of C-CTM Modelled Air Quality Indicators with Measurements
4.2. Insights from Observations Made at Nearby Sites and Using Multiple Pollutants
- High CO at the University of Wollongong and low CO at the main MUMBA site with wind directions around 150°;
- High CO at the main MUMBA site and low CO at the University of Wollongong with wind directions around 200°;
- Strongly correlated CO data at both sites with all other wind directions.
- The plume from Port Kembla with high CO, some NOx and low toluene;
- High toluene events with medium range enhancements in CO and NOx;
- Events when CO, NOx and toluene are all high.
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
Appendix A
References
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Monks, P.S.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.L.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; et al. Atmospheric composition change—Global and regional air quality. Atmos. Environ. 2009, 43, 5268–5350. [Google Scholar] [CrossRef]
- Shah, A.S.V.; Langrish, J.P.; Nair, H.; McAllister, D.A.; Hunter, A.L.; Donaldson, K.; Newby, D.E.; Mills, N.L. Global association of air pollution and heart failure: A systematic review and meta-analysis. Lancet 2013, 382, 1039–1048. [Google Scholar] [CrossRef]
- Monks, P.S.; Carpenter, L.J.; Penkett, S.A.; Ayers, G.P.; Gillett, R.W.; Galbally, I.E.; Meyer, C.P. Fundamental ozone photochemistry in the remote marine boundary layer: The SOAPEX experiment, measurement and theory. Atmos. Environ. 1998, 32, 3647–3664. [Google Scholar] [CrossRef]
- Galbally, I.E.; Bentley, S.T.; Meyer, C.P. Mid-latitude marine boundary-layer ozone destruction at visible sunrise observed at Cape Grim, Tasmania, 41 degrees 5. Geophys. Res. Lett. 2000, 27, 3841–3844. [Google Scholar] [CrossRef]
- Cope, M.E.; Hess, G.D.; Lee, S.; Tory, K.; Azzi, M.; Carras, J.; Lilley, W.; Manins, P.C.; Nelson, P.; Ng, L.; et al. The Australian Air Quality Forecasting System. Part I: Project description and early outcomes. J. Appl. Meteorol. 2004, 43, 649–662. [Google Scholar] [CrossRef]
- Hess, G.D.; Tory, K.J.; Cope, M.E.; Lee, S.; Puri, K.; Manins, P.C.; Young, M. The Australian Air Quality Forecasting System. Part II: Case study of a Sydney 7-day photochemical smog event. J. Appl. Meteorol. 2004, 43, 663–679. [Google Scholar] [CrossRef]
- Tory, K.J.; Cope, M.E.; Hess, G.D.; Lee, S.; Puri, K.; Manins, P.C.; Wong, N. The Australian Air Quality Forecasting System. Part III: Case study of a Melbourne 4-day photochemical smog eventt. J. Appl. Meteorol. 2004, 43, 680–695. [Google Scholar] [CrossRef]
- Cope, M.E.; Hess, G.D.; Lee, S.; Tory, K.J.; Burgers, M.; Dewundege, P.; Johnson, M. The Australian Air Quality Forecasting System: Exploring first steps towards determining the limits of predictability for short-term ozone forecasting. Bound.-Layer Meteorol. 2005, 116, 363–384. [Google Scholar] [CrossRef]
- Keywood, M.; Guyes, H.; Selleck, P.; Gillett, R. Quantification of secondary organic aerosol in an Australian urban location. Environ. Chem. 2011, 8, 115–126. [Google Scholar] [CrossRef]
- Cheung, H.C.; Morawska, L.; Ristovski, Z.D.; Wainwright, D. Influence of medium range transport of particles from nucleation burst on particle number concentration within the urban airshed. Atmos. Chem. Phys. 2012, 12, 4951–4962. [Google Scholar] [CrossRef]
- Cheung, H.C.; Morawska, L.; Ristovski, Z.D. Observation of new particle formation in subtropical urban environment. Atmos. Chem. Phys. 2011, 11, 3823–3833. [Google Scholar] [CrossRef][Green Version]
- Cainey, J.M.; Keywood, M.; Grose, M.R.; Krummel, P.; Galbally, I.E.; Johnston, P.; Gillett, R.W.; Meyer, M.; Fraser, P.; Steele, P.; et al. Precursors to Particles (P2P) at Cape Grim 2006: Campaign overview. Environ. Chem. 2007, 4, 143–150. [Google Scholar] [CrossRef]
- Rea, G.; Paton-Walsh, C.; Turquety, S.; Cope, M.; Griffith, D. Impact of the New South Wales fires during October 2013 on regional air quality in eastern Australia. Atmos. Environ. 2016, 131, 150–163. [Google Scholar] [CrossRef][Green Version]
- Keywood, M.; Cope, M.; Meyer, C.P.M.; Iinuma, Y.; Emmerson, K. When smoke comes to town: The impact of biomass burning smoke on air quality. Atmos. Environ. 2015, 121, 13–21. [Google Scholar] [CrossRef]
- Hinwood, A.L.; Rodriguez, C.; Runnion, T.; Farrar, D.; Murray, F.; Horton, A.; Glass, D.; Sheppeard, V.; Edwards, J.W.; Denison, L.; et al. Risk factors for increased BTEX exposure in four Australian cities. Chemosphere 2007, 66, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Ristovski, Z.D.; Suni, T.; Kulmala, M.; Boy, M.; Meyer, N.K.; Duplissy, J.; Turnipseed, A.; Morawska, L.; Baltensperger, U. The role of sulphates and organic vapours in growth of newly formed particles in a eucalypt forest. Atmos. Chem. Phys. 2010, 10, 2919–2926. [Google Scholar] [CrossRef][Green Version]
- Suni, T.; Kulmala, M.; Hirsikko, A.; Beran, T.; Laakso, L.; Aalto, P.P.; Leuning, R.; Cleugh, H.; Zegelin, S.; Hughes, D.; et al. Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest. Atmos. Chem. Phys. 2008, 8, 129–139. [Google Scholar] [CrossRef][Green Version]
- Modini, R.L.; Ristovski, Z.D.; Johnson, G.R.; He, C.; Surawski, N.; Morawska, L.; Suni, T.; Kulmala, M. New particle formation and growth at a remote, sub-tropical coastal location. Atmos. Chem. Phys. 2009, 9, 7607–7621. [Google Scholar] [CrossRef][Green Version]
- Fletcher, C.A.; Johnson, G.R.; Ristovski, Z.D.; Harvey, M. Hygroscopic and volatile properties of marine aerosol observed at Cape Grim during the P2P campaign. Environ. Chem. 2007, 4, 162–171. [Google Scholar] [CrossRef]
- Keywood, M.; Emmerson, K.M.; Hibberd, M.F. Atmosphere; Australia State of the Environment: Canberra, Australia, 2016.
- Cannistraro, G.; Cannistraro, M.; Cannistraro, A.; Galvagno, A. Analysis of air pollution in the urban center of four cities sicilian. Int. J. Heat Technol. 2016, 34, S219–S225. [Google Scholar] [CrossRef]
- Cannistraro, M.; Ponterio, L.; Cao, J. Experimental study of air pollution in the urban centre of the city of Messina. Model. Meas. Control C 2018, 79, 133–139. [Google Scholar] [CrossRef]
- Cereceda-Balic, F.; Palomo-Marín, M.R.; Bernalte, E.; Vidal, V.; Christie, J.; Fadic, X.; Guevara, J.L.; Miro, C.; Pinilla Gil, E. Impact of Santiago de Chile urban atmospheric pollution on anthropogenic trace elements enrichment in snow precipitation at Cerro Colorado, Central Andes. Atmos. Environ. 2012, 47, 51–57. [Google Scholar] [CrossRef]
- Gallardo, L.; Olivares, G.; Langner, J.; Aarhus, B. Coastal lows and sulfur air pollution in Central Chile. Atmos. Environ. 2002, 36, 3829–3841. [Google Scholar] [CrossRef]
- Paton-Walsh, C.; Guérette, É.A.; Kubistin, D.; Humphries, R.; Wilson, S.; Dominick, D.; Galbally, I.; Buchholz, R.; Bhujel, M.; Chambers, S.; et al. The MUMBA campaign: Measurements of urban, marine and biogenic air. Earth Syst. Sci. Data 2017, 9, 349–362. [Google Scholar] [CrossRef]
- Guérette, E.-A.; Paton-Walsh, C.; Kubistin, D.; Humphries, R.; Bhujel, M.; Buchholz, R.R.; Chambers, S.; Cheng, M.; Davy, P.; Dominick, D.; et al. Measurements of Urban, Marine and Biogenic Air (MUMBA): Characterisation of trace gases and aerosol at the urban, marine and biogenic interface in summer in Wollongong, Australia. PANGAEA 2017. [Google Scholar] [CrossRef]
- OEH. Air Pollution Sampling Techniques. Available online: https://www.environment.nsw.gov.au/topics/air/air-pollution/sampling-air-pollution (accessed on 1 September 2018).
- Buchholz, R.R.; Paton-Walsh, C.; Griffith, D.W.T.; Kubistin, D.; Caldow, C.; Fisher, J.A.; Deutscher, N.M.; Kettlewell, G.; Riggenbach, M.; Macatangay, R.; et al. Source and meteorological influences on air quality (CO, CH4 & CO2) at a Southern Hemisphere urban site. Atmos. Environ. 2016, 126, 274–289. [Google Scholar] [CrossRef]
- Bryant, E.A. Local Climate Processes in the Illawarra; Wollongong Studies in Geography; University of Wollongong: Wollongong, Australia, 1982; pp. 1–4. [Google Scholar]
- EPA. 2008 Calendar Year Air Emissions Inventory for the Greater Metropolitan Region in NSW. Available online: https://www.epa.nsw.gov.au/your-environment/air/air-emissions-inventory/air-emissions-inventory-2008 (accessed on 1 March 2018).
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef]
- Lawson, S.J.; Cope, M.; Lee, S.; Galbally, I.E.; Ristovski, Z.; Keywood, M.D. Biomass burning at Cape Grim: Exploring photochemistry using multi-scale modelling. Atmos. Chem. Phys. 2017, 17, 11707–11726. [Google Scholar] [CrossRef]
- Broome, R.A.; Cope, M.E.; Goldsworthy, B.; Goldsworthy, L.; Emmerson, K.; Jegasothy, E.; Morgan, G.G. The mortality effect of ship-related fine particulate matter in the Sydney greater metropolitan region of NSW, Australia. Environ. Int. 2016, 87, 85–93. [Google Scholar] [CrossRef]
- Emmerson, K.M.; Cope, M.E.; Galbally, I.E.; Lee, S.; Nelson, P.F. Isoprene and monoterpene emissions in south-east Australia: Comparison of a multi-layer canopy model with MEGAN and with atmospheric observations. Atmos. Chem. Phys. 2018, 18, 7539–7556. [Google Scholar] [CrossRef]
- Emmerson, K.M.; Galbally, I.E.; Guenther, A.B.; Paton-Walsh, C.; Guerette, E.A.; Cope, M.E.; Keywood, M.D.; Lawson, S.J.; Molloy, S.B.; Dunne, E.; et al. Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia. Atmos. Chem. Phys. 2016, 16, 6997–7011. [Google Scholar] [CrossRef]
- McGregor, J.L.; Dix, M.R. An Updated Description of the Conformal-Cubic Atmospheric Model. In High Resolution Numerical Modelling of the Atmosphere and Ocean; Hamilton, K., Ohfuchi, W., Eds.; Springer: New York, NY, USA, 2008; pp. 51–75. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Galbally, I.E.; Meyer, C.P.; Ye, Y.; Bentley, S.T.; Carpenter, L.J.; Monks, P.S. Ozone, Nitrogen Oxides (NOx) and Volatile Organic Compounds in Near Surface Air at Cape Grim; Bureau of Meteorology and CSIRO Division of Atmospheric Research: Melbourne, Australia, 1996; pp. 81–88.
- Woodhouse, M.T.; Luhar, A.K.; Stevens, L.; Galbally, I.; Thathcher, M.; Uhe, P.; Wolff, H.; Noonan, J.; Molloy, S. Australian reactive gas emissions in a global chemistry-climate model and initial results. Air Qual. Clim. Chang. 2015, 49, 31–38. [Google Scholar]
- Clarke, A.; Kapustin, V.; Howell, S.; Moore, K.; Lienert, B.; Masonis, S.; Anderson, T.; Covert, D. Sea-salt size distribution from breaking waves: Implications for marine aerosol production and optical extinction measurements during SEAS. J. Atmos. Ocean. Technol. 2003, 20, 1362–1374. [Google Scholar] [CrossRef]
- Gong, S.L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef][Green Version]
- Lu, H.; Shao, Y. A new model for dust emission by saltation bombardment. J. Geophys. Res. Atmos. 1999, 104, 16827–16842. [Google Scholar] [CrossRef][Green Version]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef][Green Version]
- Sarwar, G.; Appel, K.W.; Carlton, A.G.; Mathur, R.; Schere, K.; Zhang, R.; Majeed, M.A. Impact of a new condensed toluene mechanism on air quality model predictions in the US. Geosci. Model Dev. 2011, 4, 183–193. [Google Scholar] [CrossRef][Green Version]
- Sarwar, G.; Luecken, D.; Yarwood, G.; Whitten, G.Z.; Carter, W.P.L. Impact of an updated carbon bond mechanism on predictions from the CMAQ modeling system: Preliminary assessment. J. Appl. Meteorol. Climatol. 2008, 47, 3–14. [Google Scholar] [CrossRef]
- Shrivastava, M.K.; Lane, T.E.; Donahue, N.M.; Pandis, S.N.; Robinson, A.L. Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef][Green Version]
- Fountoukis, C.; Nenes, A. ISORROPIAII: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3−-Cl−-H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef]
- Australian Government, Department of the Environment and Energy. National Environment Protection (Ambient Air Quality) Measure, F2016C00215; Australian Government, Department of the Environment and Energy, Ed.; Federal Register of Legislation: Canberra, ACT, Australia, 2016.
- Carslaw, D.C.; Beevers, S.D.; Ropkins, K.; Bell, M.C. Detecting and quantifying aircraft and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international airport. Atmos. Environ. 2006, 40, 5424–5434. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. Openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Guérette, É.-A. Measurements of VOC Sources and Ambient Concentrations in Australia. Ph.D. Thesis, School of Chemistry, University of Wollongong, Wollongong, Australia, 2016. [Google Scholar]
- Rasmussen, R.A.; Khalil, M.A.K. Atmospheric benzene and toluene. Geophys. Res. Lett. 1983, 10, 1096–1099. [Google Scholar] [CrossRef]
- Utembe, S.; Rayner, P.; Silver, J.; Guérette, E.-A.; Fisher, J.A.; Emmerson, K.; Cope, M.; Paton-Walsh, C.; Griffiths, A.; Duc, H.; et al. Hot summers: Effect of extreme temperatures on ozone in Sydney, Australia. Atmosphere 2018, 9, 466. [Google Scholar] [CrossRef]
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Dominick, D.; Wilson, S.R.; Paton-Walsh, C.; Humphries, R.; Guérette, E.A.; Keywood, M.; Kubistin, D.; Marwick, B. Characteristics of airborne particle number size distributions in a coastal-urban environment. Atmos. Environ. 2018, 186, 256–265. [Google Scholar] [CrossRef]
- Bari, A.; Ferraro, V.; Wilson, L.R.; Luttinger, D.; Husain, L. Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmos. Environ. 2003, 37, 2825–2835. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pitts, J.N. CHAPTER 6—Rates and Mechanisms of Gas-Phase Reactions in Irradiated Organic—NOx—Air Mixtures. In Chemistry of the Upper and Lower Atmosphere; Finlayson-Pitts, B.J., Pitts, J.N., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 179–263. [Google Scholar]
- Emmerson, K.M.; Cope, M.E.; Galbally, I.E.; Lee, S.; Nelson, P.F. Isoprene and monoterpene emissions in Australia: Comparison of a multi-layer canopy model with MEGAN and with atmospheric concentration observations. Atmos. Chem. Phys. Discuss. 2017, 2017. [Google Scholar] [CrossRef]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Pitman, A.J.; Perkins, S.E. Regional projections of future seasonal and annual changes in rainfall and temperature over Australia based on skill-selected AR4 models. Earth Interact. 2008, 12, 1–50. [Google Scholar] [CrossRef]
Pollutant | NSW EPA Emissions (Gg) | Wollongong NSW EPA Emissions in Gg and (as % of NSW) | NPI NSW Emissions (Gg) | Wollongong NPI Emissions in Gg and (as % of NSW) | Breakdown of Anthropogenic Emission Sources from Wollongong | |
---|---|---|---|---|---|---|
PM2.5 | 6.1 | 0.31 (5.0%) | 0.87 | 0.03 (3.6%) | Basic Ferrous Metal Manufacturing | 93.2% |
Coal Mining | 4.0% | |||||
Electricity Generation | 1.7% | |||||
Water Transport Support Services | 0.4% | |||||
Water Supply, Sewerage and Drainage | 0.2% | |||||
PM10 | 19 | 0.47 (2.4%) | 29 | 0.35 (1.2%) | Basic Ferrous Metal Manufacturing | 68.4% |
Solid fuel burning (domestic) | 11.3% | |||||
Coal Mining | 9.1% | |||||
Motor Vehicles | 6.0% | |||||
Water Transport Support Services | 1.9% | |||||
CO | 151 | 84 (56%) | 171 | 21 (12%) | Basic Ferrous Metal Manufacturing | 80.4% |
Motor Vehicles | 16.1% | |||||
Lawn Mowing | 1.3% | |||||
Solid fuel burning (domestic) | 1.2% | |||||
Lawn Mowing (public open spaces) | 0.3% | |||||
NOx | 50 | 1.8 (3.7%) | 50 | 1.7 (3.4%) | Basic Ferrous Metal Manufacturing | 56.4% |
Motor Vehicles | 34.2% | |||||
Electricity Generation | 3.1% | |||||
Railways | 2.0% | |||||
Commercial Shipping/Boating | 1.9% | |||||
SO2 | 45 | 1.4 (3.1%) | 35 | 0.79 (2.2%) | Basic Ferrous Metal Manufacturing | 94.8% |
Commercial Shipping/Boating | 1.5% | |||||
Motor Vehicles | 1.3% | |||||
Basic Chemical Manufacturing | 1.2% | |||||
Railways | 0.6% | |||||
Basic Ferrous Metal Manufacturing | 94.8% | |||||
VOCs | 48 | 1.4 (2.8%) | 31 | 0.95 (3.1%) | Motor Vehicles | 40.1% |
Domestic/Commercial solvents/aerosols | 16.2% | |||||
Architectural Surface Coatings | 10.7% | |||||
Solid fuel burning (domestic) | 8.6% | |||||
Service stations | 4.9% |
Pollutant | Australian Air Quality Standard NEPM | Maximum Hourly * (and Daily) Averages at Wollongong OEH Site during MUMBA | Mean Hourly Average at Wollongong OEH Site during MUMBA | Maximum Hourly Averages at Main MUMBA Site | Mean Hourly Averages at Main MUMBA Site |
---|---|---|---|---|---|
CO | 9000 ppb over 8 h | 1600 ppb | 180 ppb | 860 ppb | 110 ppb |
NO2 | 120 ppb over 1 h | 29 ppb | 5.7 ppb | 23 ppb | 5.2 ppb |
O3 | 100 ppb over 1 h | 66 ppb | 15 ppb | 54 ppb | 18 ppb |
SO2 | 200 ppb over 1 h | 18 ppb | 0.9 ppb | n/a | n/a |
PM10 * | 50 µg·m−3 over 1 day | 185 * (47) µg·m−3 | 23 µg·m−3 | n/a | n/a |
PM2.5 * | 25 µg·m−3 over 1 day | 48 * (16) µg·m−3 | 7.3 µg·m−3 | n/a | n/a |
Pollutant | Proportion of Data within a Factor of 2 of Observations | Normalised Mean Gross Error | Normalised Mean Bias | Correlation Coefficient (r) |
---|---|---|---|---|
PM2.5 | 0.62 | 0.61 | 0.12 | 0.25 |
PM2.5 daily | 0.96 | 0.34 | 0.10 | 0.54 |
PM10 | 0.58 | 0.50 | −0.43 | 0.37 |
CO | 0.64 | 2.0 | 1.52 | 0.27 |
NOx | 0.53 | 0.62 | −0.37 | 0.36 |
toluene | 0.34 | 0.73 | −0.69 | 0.35 |
ozone | 0.87 | 0.31 | 0.04 | 0.60 |
isoprene | 0.29 | 1.33 | 0.62 | 0.63 |
monoterpenes | 0.38 | 1.04 | 0.37 | 0.43 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paton-Walsh, C.; Guérette, É.-A.; Emmerson, K.; Cope, M.; Kubistin, D.; Humphries, R.; Wilson, S.; Buchholz, R.; Jones, N.B.; Griffith, D.W.T.; Dominick, D.; Galbally, I.; Keywood, M.; Lawson, S.; Harnwell, J.; Ward, J.; Griffiths, A.; Chambers, S. Urban Air Quality in a Coastal City: Wollongong during the MUMBA Campaign. Atmosphere 2018, 9, 500. https://doi.org/10.3390/atmos9120500
Paton-Walsh C, Guérette É-A, Emmerson K, Cope M, Kubistin D, Humphries R, Wilson S, Buchholz R, Jones NB, Griffith DWT, Dominick D, Galbally I, Keywood M, Lawson S, Harnwell J, Ward J, Griffiths A, Chambers S. Urban Air Quality in a Coastal City: Wollongong during the MUMBA Campaign. Atmosphere. 2018; 9(12):500. https://doi.org/10.3390/atmos9120500
Chicago/Turabian StylePaton-Walsh, Clare, Élise-Andrée Guérette, Kathryn Emmerson, Martin Cope, Dagmar Kubistin, Ruhi Humphries, Stephen Wilson, Rebecca Buchholz, Nicholas B. Jones, David W. T. Griffith, Doreena Dominick, Ian Galbally, Melita Keywood, Sarah Lawson, James Harnwell, Jason Ward, Alan Griffiths, and Scott Chambers. 2018. "Urban Air Quality in a Coastal City: Wollongong during the MUMBA Campaign" Atmosphere 9, no. 12: 500. https://doi.org/10.3390/atmos9120500