Development of a Regression Model for Estimating Daily Radiative Forcing Due to Atmospheric Aerosols from Moderate Resolution Imaging Spectrometers (MODIS) Data in the Indo Gangetic Plain (IGP)
Abstract
:1. Introduction
2. Study Area and Data Sets
2.1. Study Area
2.2. Ground Station Instrumentation and Data
2.3. Satellite Data
2.4. Data Quality
3. Methodology
3.1. Multiple Regressions
3.2. Comparison of AERONET and MODIS Products
3.3. Evaluation of the Model
4. Results and Discussions
4.1. Development of Regression Model for ADRF
4.2. Evaluation of the Performance of the ADRF Model
4.3. Comparison of MODIS and AERONET Products
4.3.1. Comparison of MODIS Aqua and AERONET Products
4.3.2. Comparison of MODIS Terra Products
4.4. Evaluation of Model with MODIS Products
4.4.1. Evaluation of the Model with MODIS Aqua Products
4.4.2. Evaluation of the Model with MODIS Terra Products
4.5. Comparison of the Model Estimation from MODIS Aqua and Terra Products
4.6. Comparison of Model Estimated ADRF with Published SBDART Results
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Srivastava, A.K.; Dey, S.; Tripathi, S.N. Aerosol Characteristics over the Indo-Gangetic Basin: Implications to Regional Climate. In Atmospheric Aerosols—Regional Characteristics—Chemistry and Physics; Abdul-Razzak, H., Ed.; InTech: London, UK, 2012; pp. 47–79. [Google Scholar]
- Kumar, M.; Parmar, K.S.; Kumar, D.B.; Mhawish, A.; Broday, D.M.; Mall, R.K.; Banerjee, T. Long-Term Aerosol Climatology over Indo-Gangetic Plain: Trend, Prediction and Potential Source Fields. Atmos. Environ. 2018, 180, 37–50. [Google Scholar] [CrossRef]
- Ghude, S.D.; Chate, D.M.; Jena, C.; Beig, G.; Kumar, R.; Barth, M.C.; Pfister, G.G.; Fadnavis, S.; Pithani, P. Premature Mortality in India Due to PM2.5 and Ozone Exposure. Geophys. Res. Lett. 2016, 43, 4650–4658. [Google Scholar] [CrossRef]
- Krishna Moorthy, K.; Suresh Babu, S.; Manoj, M.R.; Satheesh, S.K. Buildup of Aerosols over the Indian Region. Geophys. Res. Lett. 2013, 40, 1011–1014. [Google Scholar] [CrossRef]
- Streets, D.G.; Bond, T.C.; Carmichael, G.R.; Fernandes, S.D.; Fu, Q.; He, D.; Klimont, Z.; Nelson, S.M.; Tsai, N.Y.; Wang, M.Q.; et al. An Inventory of Gaseous and Primary Aerosol Emissions in Asia in the Year 2000. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Venkataraman, C.; Habib, G.; Eiguren-Fernandez, A.; Miguel, A.H.; Friedlander, S.K. Residential Biofuels in South Asia: Carbonaceous Aerosol Emissions and Climate Impacts. Science 2005, 307, 1454–1456. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Shibata, T.; Srivastava, A. Synergistic Approach for the Aerosol Monitoring and Identification of Types over Indo-Gangetic Basin in Pre-Monsoon Season. Aerosol Air Qual. Res. 2014, 14, 767–782. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kumar, S.; Sharma, D.; Singh, R.P.; Kharol, S.K.; Sharma, M.; Singh, A.K.; Singh, S.; Singh, A.; Singh, D. Effects of Crop Residue Burning on Aerosol Properties, Plume Characteristics, and Long-Range Transport over Northern India. J. Geophys. Res. Atmos. 2014, 119, 5424–5444. [Google Scholar] [CrossRef]
- Singh, R.P.; Kaskaoutis, D.G. Crop Residue Burning: A Threat to South Asian Air Quality. EOS 2014, 95, 333–334. [Google Scholar] [CrossRef] [Green Version]
- Rajput, P.; Sarin, M.; Sharma, D.; Singh, D. Characteristics and Emission Budget of Carbonaceous Species from Post-Harvest Agricultural-Waste Burning in Source Region of the Indo-Gangetic Plain. Tellus Ser. B Chem. Phys. Meteorol. 2014, 66, 1–12. [Google Scholar] [CrossRef]
- Rastogi, N.; Singh, A.; Sarin, M.M.; Singh, D. Temporal Variability of Primary and Secondary Aerosols over Northern India: Impact of Biomass Burning Emissions. Atmos. Environ. 2016, 125, 396–403. [Google Scholar] [CrossRef]
- WHO. Ambient Air Quality Database, WHO. April 2018. Available online: http://www.who.int/airpollution/en/ (accessed on 3 May 2018).
- Kumar, R.; Barth, M.C.; Pfister, G.G.; Delle Monache, L.; Lamarque, J.F.; Archer-Nicholls, S.; Tilmes, S.; Ghude, S.D.; Wiedinmyer, C.; Naja, M.; et al. How Will Air Quality Change in South Asia by 2050? J. Geophys. Res. Atmos. 2018, 123, 1840–1864. [Google Scholar] [CrossRef]
- Wild, M. Global Dimming and Brightening: A Review. J. Geophys. Res. 2009, 114, 1–31. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Kaskaoutis, D.G.; Kharol, S.K.; Moorthy, K.K.; Satheesh, S.K.; Kalapureddy, M.C.R.; Badarinath, K.V.S.; Sharma, A.R.; Wild, M. Multi-Decadal Variation of the Net Downward Shortwave Radiation over South Asia: The Solar Dimming Effect. Atmos. Environ. 2012, 50, 360–372. [Google Scholar] [CrossRef]
- Singh, J.; Bhattacharya, B.K.; Kumar, M. Solar Radiation and Evaporation Trend over India. J. Earth Sci. Eng. 2012, 2, 160–165. [Google Scholar]
- Dey, S.; Tripathi, S.N. Estimation of Aerosol Optical Properties and Radiative Effects in the Ganga Basin, Northern India, during the Wintertime. J. Geophys. Res. 2007, 112, D03203. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Lelieveld, J.; Mitra, A.P.; Althausen, D.; Anderson, J.; Andreae, M.O.; Cantrell, W.; Cass, G.R.; Chung, C.E.; et al. Indian Ocean Experiment: An Integrated Analysis of the Climate Forcing and Effects of the Great Indo-Asian Haze. J. Geophys. Res. 2001, 106, 28371. [Google Scholar] [CrossRef]
- Ramanathan, V.; Ramana, M.V. Persistent, Widespread, and Strongly Absorbing Haze over the Himalayan Foothills and the Indo-Gangetic Plains. Pure Appl. Geophys. 2005, 162, 1609–1626. [Google Scholar] [CrossRef]
- Ramanathan, V. Atmospheric Brown Clouds: Health, Climate and Agriculture Impacts. Scripta Varia. 2006. Available online: http://www.academyofsciences.va/content/dam/accademia/pdf/sv106/sv106-ramanathan.pdf (accessed on 29 September 2018).
- Ramanathan, V.; Ramana, M.V.; Roberts, G.; Kim, D.; Corrigan, C.; Chung, C.; Winker, D. Warming Trends in Asia Amplified by Brown Cloud Solar Absorption. Nature 2007, 448, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Bonasoni, P.; Laj, P.; Marinoni, A.; Sprenger, M.; Angelini, F.; Arduini, J. Atmospheric Brown Clouds in the Himalayas: First Two Years of Continuous Observations at the Nepal-Climate Observatory at Pyramid (5079 M). Atmos. Chem. Phys. 2010, 10, 7515–7531. [Google Scholar] [CrossRef] [Green Version]
- Devara, P.C.S.; Manoj, M.G. Aerosol–cloud–precipitation Interactions: A Challenging Problem in Regional Environment and Climate Research. Particuology 2013, 11, 25–33. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Kafatos, M.; Tsay, S.C. Influences of Winter Haze on Fog/Low Cloud over the Indo-Gangetic Plains. J. Geophys. Res. Atmos. 2007, 112, 1–11. [Google Scholar] [CrossRef]
- Syed, F.S.; Körnich, H.; Tjernström, M. On the Fog Variability over South Asia. Clim. Dyn. 2012, 39, 2993–3005. [Google Scholar] [CrossRef]
- Shrestha, S.; Moore, G.A.; Peel, M.C. Trends in Winter Fog Events in the Terai Region of Nepal. Agric. For. Meteorol. 2018, 259, 118–130. [Google Scholar] [CrossRef]
- Jenamani, R.K. Alarming Rise in Fog and Pollution Causing a Fall in Maximum Temperature over Delhi. Curr. Sci. 2007, 93, 313–322. [Google Scholar]
- Samra, J.S.; Singh, G.; Ramakrishna, Y. Cold Wave of 2002–03: Impact on Agriculture; Central Research Institute for Dryland Agriculture: Hyderabad, India, 2003. [Google Scholar]
- Singh, S.; Singh, D. Recent Fog Trends and Its Impact on Wheat Productivity in NW Plains in India. In Proceedings of the 5th International Conference on Fog, Fog Collection and Dew, Münster, Germany, 25–30 July 2010. [Google Scholar]
- Auffhammer, M.; Ramanathan, V.; Vincent, J.R. Integrated Model Shows That Atmospheric Brown Clouds and Greenhouse Gases Have Reduced Rice Harvests in India. Proc. Natl. Acad. Sci. USA 2006, 103, 19668–19672. [Google Scholar] [CrossRef] [PubMed]
- Latha, R.; Murthy, B.S.; Lipi, K.; Srivastava, M.K.; Kumar, M. Absorbing Aerosols, Possible Implication to Crop Yield—A Comparison between IGB Stations. Aerosol. Air Qual. Res. 2017, 17, 693–705. [Google Scholar] [CrossRef]
- Ahmed, M.; Hassan, F. Cumulative Effect of Temperature and Solar Radiation on Wheat Yield. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 146–152. [Google Scholar] [CrossRef]
- Chameides, W.L.; Yu, H.; Liu, S.C.; Bergin, M.; Zhou, X.; Mearns, L.; Wang, G.; Kiang, C.S.; Saylor, R.D.; Luo, C.; et al. Case Study of the Effects of Atmospheric Aerosols and Regional Haze on Agriculture: An Opportunity to Enhance Crop Yields in China through Emission Controls? Proc. Natl. Acad. Sci. USA 1999, 96, 13626–13633. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.E. Aerosol Direct Radiative Forcing: A Review. In Atmospheric Aerosols—Regional Characteristics—Chemistry and Physics; Abdul-Razzak, H., Ed.; InTech: London, UK, 2012; pp. 379–394. [Google Scholar]
- Dey, S.; Tripathi, S.N. Aerosol Direct Radiative Effects over Kanpur in the Indo-Gangetic Basin, Northern India: Long-Term (2001–2005) Observations and Implications to Regional Climate. J. Geophys. Res. Atmos. 2008, 113, 1–20. [Google Scholar] [CrossRef]
- Ramachandran, S.; Kedia, S. Radiative Effects of Aerosols over Indo-Gangetic Plain: Environmental (Urban vs. Rural) and Seasonal Variations. Environ. Sci. Pollut. Res. 2012, 19, 2159–2171. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Chatterjee, A.; Ghosh, S.K.; Raha, S. An Integrated Campaign for Investigation of Winter-Time Continental Haze over Indo-Gangetic Basin and Its Radiative Effects. Sci. Total Environ. 2015, 533, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Kaskaoutis, D.G.; Sinha, P.R.; Vinoj, V.; Kosmopoulos, P.G.; Tripathi, S.N.; Misra, A.; Sharma, M.; Singh, R.P. Aerosol Properties and Radiative Forcing over Kanpur during Severe Aerosol Loading Conditions. Atmos. Environ. 2013, 79, 7–19. [Google Scholar] [CrossRef]
- Srivastava, R.; Ramachandran, S. The Mixing State of Aerosols over the Indo-Gangetic Plain and Its Impact on Radiative Forcing. Q. J. R. Meteorol. Soc. 2013, 139, 137–151. [Google Scholar] [CrossRef]
- Praveen, P.S.; Ahmed, T.; Kar, A.; Rehman, I.H.; Ramanathan, V. Link between Local Scale BC Emissions in the Indo-Gangetic Plains and Large Scale Atmospheric Solar Absorption. Atmos. Chem. Phys. 2012, 12, 1173–1187. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.N.; Kumar, R. Estimation of Aerosol Characteristics and Radiative Forcing during Dust Events over Dehradun. Aerosol. Air Qual. Res. 2015, 15, 2082–2093. [Google Scholar] [CrossRef]
- Sadavarte, P.; Venkataraman, C.; Cherian, R.; Patil, N.; Madhavan, B.L.; Gupta, T.; Kulkarni, S.; Carmichael, G.R.; Adhikary, B. Seasonal Differences in Aerosol Abundance and Radiative Forcing in Months of Contrasting Emissions and Rainfall over Northern South Asia. Atmos. Environ. 2015, 125, 512–523. [Google Scholar] [CrossRef]
- Sathiyamoorthy, V.; Arya, R.; Kishtawal, C.M. Radiative Characteristics of Fog over the Indo-Gangetic Plains during Northern Winter. Clim. Dyn. 2016, 47, 1793–1806. [Google Scholar] [CrossRef]
- Bibi, H.; Alam, K.; Bibi, S. Estimation of Shortwave Direct Aerosol Radiative Forcing at Four Locations on the Indo-Gangetic Plains: Model Results and Ground Measurement. Atmos. Environ. 2017, 163, 166–181. [Google Scholar] [CrossRef]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth’s Atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef]
- Singh, S.; Soni, K.; Bano, T.; Tanwar, R.S.; Nath, S.; Arya, B.C. Clear-Sky Direct Aerosol Radiative Forcing Variations over Mega-City Delhi. Ann. Geophys. 2010, 28, 1157–1166. [Google Scholar] [CrossRef]
- Tiwari, S.; Dumka, U.C.; Kaskaoutis, D.G.; Ram, K.; Panicker, A.S.; Srivastava, M.K.; Tiwari, S.; Attri, S.D.; Soni, V.K.; Pandey, A.K. Aerosol Chemical Characterization and Role of Carbonaceous Aerosol on Radiative Effect over Varanasi in Central Indo-Gangetic Plain. Atmos. Environ. 2016, 125, 437–449. [Google Scholar] [CrossRef]
- Fu, Y.; Zhu, J.; Yang, Y.; Yuan, R.; Liu, G.; Xian, T.; Liu, P. Grid-Cell Aerosol Direct Shortwave Radiative Forcing Calculated Using the SBDART Model with MODIS and AERONET Observations: An Application in Winter and Summer in Eastern China. Adv. Atmos. Sci. 2017, 34, 952–964. [Google Scholar] [CrossRef]
- Gautier, C.; Landsfeld, M. Surface Solar Radiation Flux and Cloud Radiative Forcing for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP): A Satellite, Surface Observations, and Radiative Transfer Model Study. J. Atmos. Sci. 1997, 54, 1289–1307. [Google Scholar] [CrossRef]
- Huntingford, C.; Cox, P.M.; Mercado, L.M.; Sitch, S.; Bellouin, N.; Boucher, O.; Gedney, N. Highly Contrasting Effects of Different Climate Forcing Agents on Terrestrial Ecosystem Services. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2026–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef] [Green Version]
- García, O.E.; Díez, A.M.; Expósito, F.J.; Díaz, J.P.; Dubovik, O.; Dubuisson, P.; Roger, J.C.; Eck, T.F.; Sinyuk, A.; Derimian, Y.; et al. Validation of AERONET Estimates of Atmospheric Solar Fluxes and Aerosol Radiative Forcing by Ground-Based Broadband Measurements. J. Geophys. Res. Atmos. 2008, 113, 1–16. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Houssos, E.E.; Houssos, E.E.; Bartzokas, Á.A.; Goto, D.; Nastos, P.T.; Sinha, P.R.; Kharol, S.K.; Kosmopoulos, P.G.; Singh, R.P.; et al. Synoptic Weather Conditions and Aerosol Episodes over Indo-Gangetic Plains, India. Clim. Dyn. 2014, 43, 2313–2331. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Tripathi, S.N.; Dey, S.; Kanawade, V.P.; Tiwari, S. Inferring Aerosol Types over the Indo-Gangetic Basin from Ground Based Sunphotometer Measurements. Atmos. Res. 2012, 109–110, 64–75. [Google Scholar] [CrossRef]
- Zhuang, B.L.; Li, S.; Wang, T.J.; Deng, J.J.; Xie, M.; Yin, C.Q.; Zhu, J.L. Direct Radiative Forcing and Climate Effects of Anthropogenic Aerosols with Different Mixing States over China. Atmos. Environ. 2013, 79, 349–361. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.; Agrawal, N.; Alfthan, B.; Bajracharya, S.; Maréchal, J.; van Oort, B. (Eds.) The Himalayan Climate and Water Atlas: Impact of Climate Change on Water Resources in Five of Asia’s Major River Basins; ICIMOD, GRID-Arendal and CICERO: Kathmandu, Nepal, 2015. [Google Scholar]
- Mani, M.S. Biogeography of the Indo-Gangetic Plain. In Ecology and Biogeography in India; Mani, M.S., Ed.; Springer: Dordrecht, The Netherlands, 1974; pp. 689–697. [Google Scholar]
- Gupta, R.; Seth, A. A Review of Resource Conserving Technologies for Sustainable Management of the Rice-Wheat Cropping Systems of the Indo-Gangetic Plains (IGP). Crop Prot. 2007, 26, 436–447. [Google Scholar] [CrossRef]
- Sharma, B.; Amarasinghe, U.; Xueliang, C.; de Condappa, D.; Shah, T.; Mukherji, A.; Bharati, L.; Ambili, G.; Qureshi, A.; Pant, D.; et al. The Indus and the Ganges: River Basins under Extreme Pressure. Water Int. 2010, 35, 493–521. [Google Scholar] [CrossRef]
- Taneja, G.; Pal, B.D.; Joshi, P.K.; Aggarwal, P.K.; Tyagi, N.K. Farmerss Preferences for Climate-Smart Agriculture: An Assessment in the Indo-Gangetic Plain; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2014. [Google Scholar]
- Lal, D.M.; Ghude, S.D.; Patil, S.D.; Kulkarni, S.H.; Jena, C.; Tiwari, S.; Srivastava, M.K. Tropospheric Ozone and Aerosol Long-Term Trends over the Indo-Gangetic Plain (IGP), India. Atmos. Res. 2012, 116, 82–92. [Google Scholar] [CrossRef]
- Department of Economic and Social Affairs Population Division. World Urbanization Prospects, 2014 Revisions (ST/ESA/SER.A/366); Department of Economic and Social Affairs Population Division: New York, NY, USA, 2015. [Google Scholar]
- Erenstein, O.; Thorpe, W.; Singh, J.; Varma, A. Crop–Livestock Interactions and Livelihoods in the Trans-Gangetic Plains, India; International Livestock Research Institute: Nairobi, Kenya, 2007. [Google Scholar]
- Dubovikl, O.; King, M.D. A Flexible Inversion Algorithm for Retrieval of Aerosol Optical Properties from Sun and Sky Radiance Measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- NASA. AERONET Inversion Products. Available online: https://aeronet.gsfc.nasa.gov/new_web/Documents/Inversion_products_V2.pdf (accessed on 5 July 2016).
- NASA. MODIS (Moderate Resolution Imaging Spectroradiometer). Available online: http://modis.gsfc.nasa.gov/about/media/modis_brochure.pdf (accessed on 26 September 2016).
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS Aerosol Products over Land and Ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength Dependence of the Optical Depth of Biomass Burning, Urban, and Desert Dust Aerosols. J. Geophys. Res. 1999. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy Assessments of Aerosol Optical Properties Retrieved from Aerosol Robotic Network (AERONET) Sun and Sky Radiance Measurements. J. Geophys. Res. 2000, 105, 9791–9806. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Smirnov, A.; Sinyuk, A.; Schafer, J.; Giles, D.; Dubovik, O. AERONET’s Version 2.0 Quality Assurance Criteria. Remote Sens. Atmos. Clouds 2006. [Google Scholar] [CrossRef]
- Pérez-ramírez, D.; Whiteman, D.N.; Smirnov, A.; Lyamani, H.; Holben, B.N.; Pinker, R.; Andrade, M.; Alados-Arboledas, L.; Whiteman, D.N.; Smirnov, A.; et al. Evaluation of AERONET Precipitable Water Vapor versus Microwave Radiometry, GPS, and Radiosondes at ARM Sites. J. Geophys. Res. Atmos. 2014, 119, 9596–9613. [Google Scholar] [CrossRef]
- Chu, D.A. Validation of MODIS Aerosol Optical Depth Retrieval over Land. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Remer, L.A.; Kleidman, R.G.; Levy, R.C.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Martins, J.V.; Ichoku, C.; Koren, I.; Yu, H.; et al. Global Aerosol Climatology from the MODIS Satellite Sensors. J. Geophys. Res. Atmos. 2008, 113, 1–18. [Google Scholar] [CrossRef]
- Hyer, E.J.; Reid, J.S.; Zhang, J. An Over-Land Aerosol Optical Depth Data Set for Data Assimilation by Filtering, Correction, and Aggregation of MODIS Collection 5 Optical Depth Retrievals. Atmos. Meas. Tech. 2011, 4, 379–408. [Google Scholar] [CrossRef] [Green Version]
- Mao, K.B.; Ma, Y.; Xia, L.; Chen, W.Y.; Shen, X.Y.; He, T.J.; Xu, T.R. Global Aerosol Change in the Last Decade: An Analysis Based on MODIS Data. Atmos. Environ. 2014, 94, 680–686. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, J.; Reid, J.S.; Holben, B.; Hyer, E.J.; Curtis, C. An Analysis of the Collection 5 MODIS Over-Ocean Aerosol Optical Depth Product for Its Implication in Aerosol Assimilation. Atmos. Chem. Phys. 2011, 11, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Soni, K.; Parmar, K.S.; Kapoor, S.; Kumar, N. Statistical Variability Comparison in MODIS and AERONET Derived Aerosol Optical Depth over Indo-Gangetic Plains Using Time Series Modeling. Sci. Total Environ. 2016, 553, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M. MODIS Collection 6 Aerosol Products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “Merged” Data Sets, and Usage Recommendations. J. Geo-Phys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Russell, P.B.; Kinne, S.A.; Bergstrom, R.W. Aerosol Climate Effects: Local Radiative Forcing and Column Closure Experiments. J. Geophys. Res. 1997, 102, 9397–9407. [Google Scholar] [CrossRef]
- Bilbao, J.; Román, R.; Yousif, C.; Mateos, D.; de Miguel, A. Total Ozone Column, Water Vapour and Aerosol Effects on Erythemal and Global Solar Irradiance in Marsaxlokk, Malta. Atmos. Environ. 2014, 99, 508–518. [Google Scholar] [CrossRef]
- Yu, H.; Kaufman, Y.J.; Chin, M.; Feingold, G.; Remer, L.A.; Anderson, T.L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; et al. A Review of Measurement-Based Assessments of the Aerosol Direct Radiative Effect and Forcing. Atmos. Chem. Phys. 2006, 6, 613–666. [Google Scholar] [CrossRef]
- Cohen, J. Multiple Regression as a General Data Analytic System. Psychol. Bull. 1968, 70, 426–443. [Google Scholar] [CrossRef]
- Prasad, A.K.; Singh, R.P. Comparison of MISR-MODIS Aerosol Optical Depth over the Indo-Gangetic Basin during the Winter and Summer Seasons (2000–2005). Remote Sens. Environ. 2007, 107, 109–119. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting Through Conceptual Models Part I—A Discussion of Principles*. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Olden, J.D.; Jackson, D.A. Torturing Data for the Sake of Generality: How Valid Are Our Regression Models? Ecoscience 2000, 7, 501–510. [Google Scholar] [CrossRef]
- Shao, J.; Rao, J.N.K. Jackknife Inference for Heteroscedastic Linear Regression Models. Can. J. Stat. 1993, 21, 377–395. [Google Scholar] [CrossRef]
- Garren, S.T.; Kott, P.S. Evaluating the Effective Degrees of Freedom of the Delete-a-Group Jackknife. Commun. Stat. Simul. Comput. 2014, 43, 2649–2660. [Google Scholar] [CrossRef]
- Nair, V.S.; Moorthy, K.K.; Alappattu, D.P.; Kunhikrishnan, P.K.; George, S.; Nair, P.R.; Babu, S.S.; Abish, B.; Satheesh, S.K.; Tripathi, S.N.; et al. Wintertime Aerosol Characteristics over the Indo-Gangetic Plain (IGP): Impacts of Local Boundary Layer Processes and Long-Range Transport. J. Geophys. Res. Atmos. 2007, 112, 1–15. [Google Scholar] [CrossRef]
- Beven, K. A Manifesto for the Equifinality Thesis. J. Hydrol. 2006, 320, 18–36. [Google Scholar] [CrossRef] [Green Version]
- Ritter, A.; Muñoz-Carpena, R. Performance Evaluation of Hydrological Models: Statistical Significance for Reducing Subjectivity in Goodness-of-Fit Assessments. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
- Choudhry, P.; Misra, A.; Tripathi, S.N. Study of MODIS Derived AOD at Three Different Locations in the Indo Gangetic Plain: Kanpur, Gandhi College and Nainital. Ann. Geophys. 2012, 30, 1479–1493. [Google Scholar] [CrossRef]
- García, O.E.; Díaz, J.P.; Expósito, F.J.; Díaz, A.M.; Dubovik, O.; Derimian, Y. Aerosol Radiative Forcing: AERONET-Based Estimates. In Climate Models; Druyan, L., Ed.; InTech: London, UK, 2012; p. 336. [Google Scholar]
- Alam, K.; Trautmann, T.; Blaschke, T. Aerosol Optical Properties and Radiative Forcing over Mega-City Karachi. Atmos. Res. 2011, 101, 773–782. [Google Scholar] [CrossRef]
- Alam, K.; Trautmann, T.; Blaschke, T.; Majid, H. Aerosol Optical and Radiative Properties during Summer and Winter Seasons over Lahore and Karachi. Atmos. Environ. 2012, 50, 234–245. [Google Scholar] [CrossRef]
- Sen, A.; Abdelmaksoud, A.S.; Nazeer Ahammed, Y.; Alghamdi, M.; Banerjee, T.; Bhat, M.A.; Chatterjee, A.; Choudhuri, A.K.; Das, T.; Dhir, A.; et al. Variations in Particulate Matter over Indo-Gangetic Plains and Indo-Himalayan Range during Four Field Campaigns in Winter Monsoon and Summer Monsoon: Role of Pollution Pathways. Atmos. Environ. 2017, 154, 200–224. [Google Scholar] [CrossRef]
SN | Site Name | Country | Longitude (Decimal Degrees) | Latitude (Decimal Degrees) | Elevation (Metres) |
---|---|---|---|---|---|
1 | Bhola | Bangladesh | 90.756 | 22.227 | 7 |
2 | Dhaka University | Bangladesh | 90.398 | 23.728 | 34 |
3 | Gandhi College | India | 84.128 | 25.871 | 60 |
4 | IIT KGP EXT Kolkata | India | 88.418 | 22.574 | 10 |
5 | Kanpur | India | 80.232 | 26.513 | 123 |
6 | Karachi | Pakistan | 67.136 | 24.946 | 49 |
7 | Lahore | Pakistan | 74.264 | 31.480 | 209 |
8 | Lumbini | Nepal | 83.280 | 27.490 | 110 |
9 | New Delhi | India | 77.222 | 28.589 | 241 |
10 | Pantnagar | India | 79.521 | 29.046 | 241 |
Model | Number of Observations | A (Sig.) (Wm−2) | B1 (Sig.) (Wm−2) | B2 (Sig.) (Wm−3) | Adjusted R2 | Standard Error (Wm−2) |
---|---|---|---|---|---|---|
Year-round Model | 5138 | −32.464 (0.00) | −119.446 (0.00) | 4.471 × 102 (0.00) | 0.834 | 14.390 |
Season Models | ||||||
Winter | 884 | −23.895 (0.00) | −117.876 (0.00) | −4.89 × 102 (0.62) | 0.846 | 14.724 |
Pre-monsoon | 1854 | −24.256 (0.00) | −129.979 (0.00) | 2.232 × 102 (0.00) | 0.828 | 13.184 |
Monsoon | 812 | −40.510 (0.00) | −97.921 (0.00) | 4.093 × 102 (0.00) | 0.825 | 11.364 |
Post monsoon | 1588 | −35.872 (0.00) | −118.795 (0.00) | 5.458 × 102 (0.00) | 0.862 | 14.970 |
SN | Stations | Number of Observations | Mean Error (Wm−2) | Mean Absolute Error (Wm−2) | Root Mean Square Error (RMSE) (Wm−2) | Nash-Sutcliffe Efficiency (NSE) | Correlation Coefficient, r |
---|---|---|---|---|---|---|---|
1 | Bhola | 37 | −7.689 | 11.760 | 15.428 | 0.608 | 0.870 |
2 | Dhaka University | 253 | 10.158 | 16.997 | 22.914 | 0.723 | 0.882 |
3 | Gandhi College | 833 | 0.419 | 10.924 | 15.144 | 0.782 | 0.886 |
4 | Kanpur | 1581 | −0.405 | 9.780 | 13.522 | 0.831 | 0.912 |
5 | Karachi | 1028 | −5.255 | 8.607 | 10.592 | 0.827 | 0.932 |
6 | Kolkata | 27 | 22.946 | 23.338 | 26.284 | 0.402 | 0.954 |
7 | Lahore | 1017 | 1.289 | 10.646 | 14.436 | 0.822 | 0.909 |
8 | Lumbini | 106 | 3.679 | 16.702 | 20.912 | 0.802 | 0.900 |
9 | New Delhi | 67 | 7.828 | 12.962 | 18.301 | 0.695 | 0.888 |
10 | Pantnagar | 189 | 2.984 | 8.816 | 11.911 | 0.790 | 0.896 |
All Stations | 5138 | 0.000 | 10.490 | 14.390 | 0.830 | 0.910 |
SN | All Stations of IGP Except | Number of Observations N | Intercept, A (Wm−2) | AOD Coefficient, B1 (Wm−2) | Atmospheric Moisture Coefficient, B2 (Wm−3) | Adjusted R Square | Standard Error (Wm−2) |
---|---|---|---|---|---|---|---|
1 | Bhola | 5101 | −32.388 | −119.608 | 4.451 × 102 | 0.834 | 14.382 |
2 | Dhaka University | 4885 | −32.355 | −118.039 | 4.301 × 102 | 0.835 | 13.791 |
3 | Gandhi College | 4305 | −32.846 | −120.940 | 5.113 × 102 | 0.842 | 14.224 |
4 | Kanpur | 3557 | −31.758 | −121.390 | 4.552 × 102 | 0.834 | 14.749 |
5 | Karachi | 4110 | −36.430 | −116.116 | 4.775 × 102 | 0.813 | 15.098 |
6 | Kolkata | 5111 | −32.424 | −119.215 | 4.448 × 102 | 0.835 | 14.300 |
7 | Lahore | 4121 | −30.218 | −120.602 | 3.843 × 102 | 0.835 | 14.352 |
8 | Lumbini | 5032 | −32.409 | −119.616 | 4.527 × 102 | 0.835 | 14.220 |
9 | New Delhi | 5071 | −32.420 | −119.184 | 4.429 × 102 | 0.835 | 14.331 |
10 | Pantnagar | 4949 | −32.205 | −119.537 | 4.426 × 102 | 0.834 | 14.476 |
Min | 3557 | −36.430 | −121.390 | 3.843 × 102 | 0.813 | 13.791 | |
Max | 5111 | −30.218 | −116.116 | 5.113 × 102 | 0.842 | 15.098 | |
Average | 4624.20 | −32.545 | −119.425 | 4.487 × 102 | 0.833 | 14.392 | |
Standard Deviation | 553.99 | 1.543 | 1.513 | 0.323 × 102 | 0.008 | 0.344 | |
All Stations | 5138 | −32.464 | −119.446 | 4.471 × 102 | 0.834 | 14.390 |
SN | Row Labels | Number of Observations N | MODIS Aqua Retrieved AOD | MODIS Aqua Retrieved Atmospheric Water Vapour | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ME | MAE | RMSE | r | ME (cm) | MAE (cm) | RMSE (cm) | r | |||
1 | Bhola | 37 | 0.052 | 0.124 | 0.182 | 0.811 | −0.264 | 0.493 | 0.617 | 0.838 |
2 | Dhaka University | 253 | −0.072 | 0.156 | 0.218 | 0.785 | 0.445 | 0.559 | 0.674 | 0.865 |
3 | Gandhi College | 833 | −0.060 | 0.159 | 0.223 | 0.732 | 0.210 | 0.500 | 0.669 | 0.899 |
4 | Kolkata | 1581 | 0.029 | 0.140 | 0.207 | 0.767 | 0.348 | 0.481 | 0.645 | 0.882 |
5 | Kanpur | 1028 | −0.078 | 0.110 | 0.156 | 0.785 | 0.313 | 0.460 | 0.592 | 0.847 |
6 | Karachi | 27 | −0.107 | 0.175 | 0.206 | 0.686 | 0.383 | 0.501 | 0.651 | 0.839 |
7 | Lahore | 1017 | 0.079 | 0.175 | 0.255 | 0.776 | 0.246 | 0.450 | 0.631 | 0.929 |
8 | Lumbini | 106 | −0.083 | 0.133 | 0.183 | 0.898 | −0.436 | 0.602 | 0.705 | 0.906 |
9 | New Delhi | 67 | 0.023 | 0.167 | 0.240 | 0.538 | 0.518 | 0.623 | 0.819 | 0.930 |
10 | Pantnagar | 189 | 0.046 | 0.124 | 0.164 | 0.749 | 0.152 | 0.394 | 0.556 | 0.871 |
All Stations | 5138 | −0.004 | 0.144 | 0.210 | 0.778 | 0.278 | 0.479 | 0.638 | 0.887 |
SN | Row Labels | Number of Observations N | MODIS Aqua Retrieved AOD | MODIS Aqua Retrieved Atmospheric Water Vapour | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ME | MAE | RMSE | r | ME (cm) | MAE (cm) | RMSE (cm) | r | |||
1 | Winter | 884 | 0.020 | 0.118 | 0.180 | 0.840 | 0.297 | 0.417 | 0.523 | 0.655 |
2 | Pre monsoon | 1854 | −0.059 | 0.130 | 0.185 | 0.702 | 0.197 | 0.432 | 0.562 | 0.820 |
3 | Monsoon | 558 | 0.093 | 0.249 | 0.336 | 0.703 | 0.642 | 0.813 | 1.015 | 0.853 |
4 | Post monsoon | 1842 | 0.011 | 0.139 | 0.197 | 0.824 | 0.175 | 0.397 | 0.519 | 0.780 |
All Stations | 5138 | −0.004 | 0.144 | 0.210 | 0.778 | 0.278 | 0.479 | 0.638 | 0.887 |
SN | Row Labels | Number of Observations N | MODIS Terra Retrieved AOD | MODIS Terra Retrieved Atmospheric Water Vapour | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ME | MAE | RMSE | r | ME (cm) | MAE (cm) | RMSE (cm) | r | |||
1 | Bhola | 41 | 0.115 | 0.162 | 0.218 | 0.744 | −0.317 | 0.527 | 0.658 | 0.876 |
2 | Dhaka University | 232 | 0.014 | 0.166 | 0.262 | 0.768 | 0.262 | 0.492 | 0.604 | 0.819 |
3 | Gandhi College | 823 | 0.000 | 0.143 | 0.220 | 0.729 | 0.186 | 0.513 | 0.709 | 0.893 |
4 | Kolkata | 1773 | 0.087 | 0.149 | 0.225 | 0.793 | 0.301 | 0.474 | 0.655 | 0.895 |
5 | Kanpur | 918 | −0.062 | 0.106 | 0.162 | 0.748 | 0.381 | 0.484 | 0.616 | 0.845 |
6 | Karachi | 25 | −0.037 | 0.163 | 0.225 | 0.613 | 0.369 | 0.528 | 0.638 | 0.849 |
7 | Lahore | 1005 | 0.112 | 0.195 | 0.289 | 0.768 | 0.118 | 0.425 | 0.582 | 0.918 |
8 | Lumbini | 104 | −0.067 | 0.114 | 0.166 | 0.907 | −0.651 | 0.690 | 0.781 | 0.884 |
9 | New Delhi | 69 | 0.082 | 0.189 | 0.256 | 0.572 | 0.543 | 0.611 | 0.776 | 0.947 |
10 | Pantnagar | 190 | −0.178 | 0.197 | 0.235 | 0.690 | −0.453 | 0.543 | 0.670 | 0.825 |
All Stations | 5180 | 0.035 | 0.152 | 0.230 | 0.781 | 0.212 | 0.483 | 0.646 | 0.880 |
SN | Row Labels | Number of Observations N | MODIS Terra Retrieved AOD | MODIS Terra Retrieved Atmospheric Water Vapour | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ME | MAE | RMSE | r | ME (cm) | MAE (cm) | RMSE (cm) | r | |||
1 | Winter | 886 | 0.065 | 0.142 | 0.226 | 0.821 | 0.175 | 0.388 | 0.492 | 0.598 |
2 | Pre monsoon | 1848 | −0.016 | 0.126 | 0.181 | 0.725 | 0.182 | 0.445 | 0.579 | 0.813 |
3 | Monsoon | 833 | 1.508 | 1.100 | 0.673 | 0.713 | 0.573 | 0.799 | 1.015 | 0.820 |
4 | Post monsoon | 1613 | 0.035 | 0.149 | 0.222 | 0.834 | 0.079 | 0.415 | 0.541 | 0.750 |
All Stations | 5180 | 0.035 | 0.152 | 0.230 | 0.781 | 0.212 | 0.483 | 0.646 | 0.880 |
SN | Row Labels | Number of Observations | Mean Error (Wm−2) | Mean Absolute Error (Wm−2) | RMSE (Wm−2) | Correlation Coefficient, r |
---|---|---|---|---|---|---|
1 | Bhola | 37 | −15.070 | 22.611 | 31.371 | 0.610 |
2 | Dhaka University | 253 | 20.767 | 29.357 | 40.322 | 0.619 |
3 | Gandhi College | 833 | 8.478 | 23.676 | 32.359 | 0.603 |
4 | Kanpur | 1581 | −2.349 | 20.921 | 29.095 | 0.672 |
5 | Karachi | 1028 | 5.466 | 15.083 | 20.810 | 0.661 |
6 | Kolkata | 27 | 37.429 | 40.715 | 45.397 | 0.664 |
7 | Lahore | 1017 | −6.989 | 25.954 | 36.337 | 0.586 |
8 | Lumbini | 106 | 11.589 | 24.624 | 31.964 | 0.779 |
9 | New Delhi | 67 | 7.410 | 29.878 | 41.419 | 0.138 |
10 | Pantnagar | 189 | −1.876 | 18.234 | 24.768 | 0.587 |
All Stations | 5138 | 1.739 | 21.822 | 30.700 | 0.660 |
SN | Row Labels | Number of Observations | Mean Error (Wm−2) | Mean Absolute Error (Wm−2) | RMSE (Wm−2) | Correlation Coefficient, r |
---|---|---|---|---|---|---|
1 | Bhola | 41 | −21.532 | 28.316 | 37.577 | 0.452 |
2 | Dhaka University | 232 | 10.634 | 30.945 | 42.617 | 0.610 |
3 | Gandhi College | 823 | 1.574 | 22.494 | 33.057 | 0.576 |
4 | Kanpur | 1773 | −8.722 | 21.861 | 31.624 | 0.675 |
5 | Karachi | 918 | 4.114 | 14.923 | 22.069 | 0.625 |
6 | Kolkata | 25 | 28.748 | 37.405 | 42.506 | 0.462 |
7 | Lahore | 1005 | −11.536 | 27.854 | 40.269 | 0.573 |
8 | Lumbini | 104 | 9.137 | 23.826 | 32.175 | 0.762 |
9 | New Delhi | 69 | −0.385 | 29.929 | 41.748 | 0.144 |
10 | Pantnagar | 190 | 21.894 | 24.394 | 29.638 | 0.649 |
All Stations | 5180 | −2.818 | 22.668 | 33.080 | 0.654 |
Station | Duration | Mean Error (Wm−2) | Mean Absolute Error (Wm−2) | Root Mean Square Error (Wm−2) | Pearson Correlation Coefficient | ||||
---|---|---|---|---|---|---|---|---|---|
SBDART | ADRF MODEL | SBDART | ADRF MODEL | SBDART | ADRF MODEL | SBDART | ADRF MODEL | ||
Karachi | August 2006 to July 2007 | 4.64 | 0.21 | 5.18 | 11.28 | 8.11 | 13.46 | 0.91 | 0.74 |
Karachi | April 2010 to February 2011 | 2.68 | 1.49 | 3.92 | 3.89 | 4.97 | 6.64 | 0.91 | 0.79 |
Karachi | Combined | 2.05 | 0.39 | 4.74 | 8.67 | 7.16 | 11.52 | 0.92 | 0.82 |
Lahore | April 2010 to Feb 2011 | −6.77 | −3.35 | 6.77 | 14.37 | 8.86 | 15.67 | 0.98 | 0.71 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, S.; Peel, M.C.; Moore, G.A. Development of a Regression Model for Estimating Daily Radiative Forcing Due to Atmospheric Aerosols from Moderate Resolution Imaging Spectrometers (MODIS) Data in the Indo Gangetic Plain (IGP). Atmosphere 2018, 9, 405. https://doi.org/10.3390/atmos9100405
Shrestha S, Peel MC, Moore GA. Development of a Regression Model for Estimating Daily Radiative Forcing Due to Atmospheric Aerosols from Moderate Resolution Imaging Spectrometers (MODIS) Data in the Indo Gangetic Plain (IGP). Atmosphere. 2018; 9(10):405. https://doi.org/10.3390/atmos9100405
Chicago/Turabian StyleShrestha, Shreemat, Murray C. Peel, and Graham A. Moore. 2018. "Development of a Regression Model for Estimating Daily Radiative Forcing Due to Atmospheric Aerosols from Moderate Resolution Imaging Spectrometers (MODIS) Data in the Indo Gangetic Plain (IGP)" Atmosphere 9, no. 10: 405. https://doi.org/10.3390/atmos9100405
APA StyleShrestha, S., Peel, M. C., & Moore, G. A. (2018). Development of a Regression Model for Estimating Daily Radiative Forcing Due to Atmospheric Aerosols from Moderate Resolution Imaging Spectrometers (MODIS) Data in the Indo Gangetic Plain (IGP). Atmosphere, 9(10), 405. https://doi.org/10.3390/atmos9100405