An Integrated Method for Factor Number Selection of PMF Model: Case Study on Source Apportionment of Ambient Volatile Organic Compounds in Wuhan
Abstract
:1. Introduction
2. Experimental
2.1. Measurement Site and Instrumentations
2.2. Positive Matrix Factorization
Method for Selection of Factor Number
3. Results and Discussions
3.1. General Pattern of VOC Concentrations
3.2. Factor Selection for PMF Runs
3.3. Source Identification by PMF
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aikin, A.C.; Herman, J.R.; Maier, F.J.; McQuillan, C.J. Atmospheric chemistry of ethane and ethylene. J. Geophys. Res. Oceans Atmos. 1982, 87, 3105–3118. [Google Scholar] [CrossRef]
- Tancrede, M.; Wilson, R.; Zeise, L.; Crouch, E.A.C. The carcinogenic risk of some organic vapours indoors: A theoretical survey. Atmos. Environ. 1987, 21, 2187–2193. [Google Scholar] [CrossRef]
- Son, Y.S.; Kim, J.C. Decomposition of sulfur compounds by radiolysis: I. Influential factors. Chem. Eng. J. 2015, 262, 217–223. [Google Scholar] [CrossRef]
- Massolo, L.; Rehwagen, M.; Porta, A.; Ronco, A.; Herbarth, O.; Mueller, A. Indoor-outdoor distribution and risk assesment of volatile organic compounds in the atmosphere of industrial and urban areas. Environ. Toxicol. 2010, 25, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Sweet, C.W.; Vermette, S.J. Toxic volatile organic compounds in urban air Illinois. Environ. Sci. Technol. 1992, 26, 165–173. [Google Scholar] [CrossRef]
- Bari, M.A.; Kindziersk, W.B. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Sci. Total Environ. 2018, 631–632, 627–640. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Gong, S.; Yu, Y.; Yu, L.; Wu, L.; Mao, H.; Song, C.; Zhao, S.; Liu, H.; Li, X.; Li, R. Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ. Pollut. 2017, 223, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hong, R.; Fu, H.; Zhou, D.; Chen, J. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China. J. Environ. Sci. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liang, D.; Yang, J.; Dai, Q.; Bi, X.; Feng, Y.; Yuan, J.; Xiao, Z.; Zhang, Y.; Xu, H. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China. Environ. Pollut. 2016, 218, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xie, S.; Zeng, L.; Wu, R.; Li, J. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region,China. Atmos. Environ. 2015, 113, 247–254. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.; Zeng, L.; Li, L.; Li, Y.; Wu, R. Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014. Atmos. Chem. Phys. 2015, 15, 7945–7959. [Google Scholar] [CrossRef]
- An, J.; Zhu, B.; Wang, H.; Li, Y.; Lin, X.; Yang, H. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmos. Environ. 2014, 97, 206–214. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Lu, S.; Chang, C.; Wang, J.; Chen, G. Volatile organic compound (VOC) measurements in the Pearl River Delta (PRD) region, China. Atmos. Phys. Chem. 2008, 8, 1531–1545. [Google Scholar] [CrossRef]
- Guo, H.; Ling, Z.H.; Cheng, H.; Simpson, I.; Lyu, X.; Wang, X.; Shao, M.; Lu, H.; Blake, D. Tropospheric volatile organic compounds in China. Sci. Total Environ. 2017, 574, 1021–1043. [Google Scholar] [CrossRef] [PubMed]
- Klimont, Z.; Streets, D.G.; Gupta, S.; Cofala, J.; Fu, L.X.; Ichikawa, Y. Anthropogenic emissions of non-methane volatile organic compounds in China. Atmos. Environ. 2002, 36, 1309–1322. [Google Scholar] [CrossRef]
- Saeaw, N.; Thepanondh, S. Source apportionment analysis of airborne VOCs using positive matrix factorization in industrial and urban areas in Thailand. Atmos. Pollut. Res. 2015, 6, 644–650. [Google Scholar] [CrossRef]
- Li, B.; Sai, S.; Yong, H.; Xue, G.; Huang, Y.; Wang, L.; Cheng, Y.; Dai, W.; Zhong, H.; Cao, J.; Lee, S. Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China. Atmos. Environ. 2017, 161, 1–12. [Google Scholar] [CrossRef]
- Wang, H.; Jing, S.; Lou, S.; Hu, Q.; Li, T.; Shi, K.; Cheng, Q.; Li, P.; Chen, C. Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China. Sci. Total Environ. 2017, 607–608, 253–261. [Google Scholar]
- MEP, China. The Technical Guide for the Compilation of Emission Inventory of Volatile Organic Compounds. 2014; (in Chinese). Available online: http://hbj.neijiang.gov.cn/2016/12/1282079.html (accessed on 10 July 2018).
- Wang, Q.; Li, S.; Dong, M.; Li, W.; Gao, X.; Ye, R.; Zhang, D. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan. Atmos. Environ. 2018, 182, 234–241. [Google Scholar] [CrossRef]
- Shen, L.; Xiang, P.; Liang, S.; Chen, W.; Wang, M.; Lu, S.; Wang, Z. Sources Profiles of Volatile Organic Compounds (VOCs) Measured in a Typical Industrial Process in Wuhan, Central China. Atmosphere 2018, 9, 297. [Google Scholar] [CrossRef]
- Ou, J.; Zheng, J.; Yuan, Z.; Guan, D.; Huang, Z.; Yu, F.; Shao, M.; Louie, P. Reconciling discrepancies in the source characterization of VOCs between emission inventories and receptor modeling. Sci. Total Environ. 2018, 628-629, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Leuchener, M.; Rappengluck, B. VOC source-receptor relationships in Houston during TexAQS-II. Atmos. Environ. 2010, 44, 4056–4067. [Google Scholar] [CrossRef]
- Song, Y.; Dai, W.; Shao, M.; Liu, S.; Lu, W.; Kuster, P. Goldan Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China. Environ. Pollut. 2008, 156, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Dumanoglu, Y.; Kara, M.; Altiok, H.; Odabasi, M.; Elbir, T.; Bayram, A. Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region. Atmos. Environ. 2014, 98, 168–178. [Google Scholar] [CrossRef]
- Li, J.; Zhai, C.; Yu, J.; Liu, R.; Li, Y.; Zeng, L.; Xie, S. Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China. Sci. Total Environ. 2018, 627, 1442–1452. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, H.; Jiang, S.; Wang, Y.; Cheng, T.; Tao, S.; Lou, S.; Qiao, L.; Chen, J. Characteristics and sources of atmospheric volatile organic compounds (VOCs) along the mid-lower Yangtze River in China. Atmos. Environ. 2018, 190, 232–240. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Badol, C.; Locoge, N.; Galloo, J. Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions: Part II: Source contribution assessment using the Chemical Mass Balance (CMB) model. Sci. Total Environ. 2008, 389, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Shao, M.; Che, W.; Zhang, L.; Zhong, L.; Zhang, Y.; Streets, D. Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China. Environ. Sci. Technol. 2009, 43, 8580–8586. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, S.; Wei, W.; Zhou, Y.; Yao, S.; Zhang, H. Characteristics and source apportionment of VOCs in the suburban area of Beijing, China. Atmos. Pollut. Res. 2016, 4, 711–724. [Google Scholar] [CrossRef]
- Lyu, X.P.; Chen, N.; Guo, H.; Zhang, W.H.; Wang, N.; Wang, Y.; Liu, M. Ambient volatile organic compounds and their effect on ozone production in Wuhan, central. Sci. Total Environ. 2016, 541, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Gong, W.; Wang, Z.; Zhang, F.; Wang, X.; Lv, X.; Liu, J.; Fu, X.; Zhang, G. Ionic composition of submicron particles (PM1.0) during the long-lasting haze period in January 2013 in Wuhan, central China. J. Environ. Sci. 2014, 26, 810–817. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.; Cheng, H.; Lv, X.; Gong, W.; Wang, X.; Zhang, G. Seasonal variations and chemical characteristics of PM2.5 in Wuhan, central China. Sci. Total Environ. 2015, 518–519, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Lyu, X.P.; Guo, H.; Zhang, W.; Wang, N.; Wang, Y.; Liu, M. Causes of ozone pollution in summer in Wuhan, Central China. Environ. Pollut. 2018, 241, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Hubei statistical bureau, 2017 Hubei statistical yearbook. 2018. Available online: http://www.yearbookchina.com (accessed on 23 September 2018).
- Tianhong Instrument Group. TH-300B Atmosphere Volatile Organic Compounds (VOC) Rapid and Continuous Automatic Monitoring System. 2012. Available online: https://www.instrument.com.cn/netshow/SH101607/C164305.htm (accessed on 10 July 2018).
- Huang, C.; Shan, W.; Xiao, H. Recent Advances in Passive Air Sampling of Volatile Organic Compounds. Aerosol Air Qual. Res. 2018, 18, 602–622. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Latif, M.; Lim, C.; Amil, N.; Jaafar, S.; Dominick, D.; Nadzir, M.; Sahan, M.; Tahir, N. Saesonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5. Atmos. Environ. 2015, 106, 178–190. [Google Scholar] [CrossRef]
- Yu, L.; Wang, G.; Zhang, R.; Zhang, L.; Song, Y.; Wu, B.; Wu, X. Characterization and Source Apportionment of PM2.5 in a urban environment in Beijing. Aerosol Air Qual. Res. 2013, 574–583. [Google Scholar] [CrossRef]
- Gao, J.; Tian, H.; Cheng, K. Seasonal and spatial variation of trace elements in multisize airborne particulate matters of Beijing, China: Mass concentration, enrichment characterization and source apportionment of volatile organic compounds (VOCs)in a heavily industrialized region. Atmos. Environ. 2014, 257–265. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Malm, W.C.; Sisler, J.F. Atmospheric aerosol over Alaska: 2. Elemental composition and sources. J. Geophys. Res. Atmos. 1998, 103, 19045–19057. [Google Scholar] [CrossRef] [Green Version]
- Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. J. Air Waste Manag. Assoc. 2007, 57, 146–154. [Google Scholar] [CrossRef]
- Kara, M.; Hopke, P.K.; Dumanoglu, Y.; Altiok, H.; Elbir, T.; Odabasi, M.; Bayram, A. Characterization of PM Using Multiple Site Data in a Heavily Industrialized Region of Turkey. Aerosol Air Qual. Res. 2015, 15, 11–27. [Google Scholar] [CrossRef]
- US-Environmental Protection Agency. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide, EPA/600/R-14/108. 2014. Available online: www.epa.gov (accessed on 10 September 2015).
- Yuan, Z.; Zhong, L.; Lau, A.; Yu, J.Z.; Louie, P. Volatile organic compounds in the Pearl River Delta: Identification of source regions and recommendations for emission-oriented monitoring strategies. Atmos. Environ. 2013, 76, 162–172. [Google Scholar] [CrossRef]
- Wang, F.; Zhong, Z.; Wu, S.; Zhang, W.; Li, Q.; Hu, S.; Wang, J. Case study of Wuhan dust pollution in May 2014. Acta Sci. Nat. Univ. Pekinensis 2015, 51, 1132–1140. [Google Scholar]
- Li, L.; Chen, Y.; Zeng, L.; Shao, M.; Xie, S.; Chen, W.; Liu, S.; Wu, Y.; Cao, W. Biomass burning contribution to ambient volatile organic compounds in the Chengdu-Chongqing Region, China. Atmos. Environ. 2014, 99, 403–410. [Google Scholar] [CrossRef]
- Liu, L.; Ye, X.; Bozell, J. A comparative review of petroleum-based and bio-based acrolein production. ChemSusChem 2012, 6, 1162–1180. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, T.; Simpson, I.J.; Blake, D.R.; Yu, X.M.; Kwok, Y.H.; Li, Y.S. Source contributions to ambient VOCs and CO at a rural site in eastern China. Atmos. Environ. 2004, 38, 4551–4560. [Google Scholar] [CrossRef]
- Guo, H.; Wang, T.; Blake, D.; Simpson, I.; Kwok, Y.; Li, Y. Regional and local contributions to ambient non-methane volatile organic compounds at a polluted rural/coastal site in Pearl River Delta, China. Atmos. Environ. 2006, 40, 2345–2359. [Google Scholar] [CrossRef]
- Schneidemesser, E.; Monks, P.; Duelmer, C. Global comparison of VOC and CO observations in urban areas. Atmos. Environ. 2010, 44, 5053–5064. [Google Scholar] [CrossRef]
- Brown, S.G.; Frankel, A.; Hafner, H. Source Apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmos. Environ. 2007, 41, 227–237. [Google Scholar] [CrossRef]
- Quan, J.; Tie, X.; Zhang, Q.; liu, Q.; Li, X.; Gao, Y.; Zhao, D. Characteristics of haevy aerosol pollution during the 2012-2013 winter in Beijing, China. Atmos. Environ. 2014, 88, 83–89. [Google Scholar] [CrossRef]
- Wang, M.; Shao, M.; Lu, S.; Yang, Y.; Chen, W. Evidence of coal combustion contribution to ambient VOCs during winter in Beijing. Chin. Chem. Lett. 2013, 24, 829–832. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.; Fujita, E. Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ. 2001, 35, 1567–1584. [Google Scholar] [CrossRef]
- Cai, C.; Geng, F.; Tie, X.; Yu, Q.; An, J. Characteristics and spource apportionment of VOCs measured in Shanghai, China. Atmos. Environ. 2010, 44, 5005–5014. [Google Scholar] [CrossRef]
- Han, M.; lu, X.; Zhao, C.; Ran, L.; Han, S. Characterization and Source Apportionment of Volatile Organic Compounds in urban and suburban Tianjin, China. Adv. Atmos. Sci. 2015, 32, 439–444. [Google Scholar] [CrossRef]
- Leuchner, M.; Gubo, S.; Schunk, C.; Wastl, C.; Kirchner, M.; Menzel, A.; Plass-Dülmer, C. Can positive matrix factorization help to understand patterns of organic trace gases at the continental global atmosphere watch site Hohenpeissenberg. Atmos. Chem. Phys. 2015, 15, 1221–1236. [Google Scholar] [CrossRef]
- Bittencourt, S.S.; Torres, R.B. Volumetrics properties of binary mixtures of (acetonitrile and amines) at several temperatures with application of the ERAS model. J. Chem. Thermodyn. 2016, 93, 222–241. [Google Scholar] [CrossRef]
- Hu, L.; Yin, C.; Zeng, Z. Detection of adulteration in acetonitrile using near infrared spectroscopy coupled with pattern recognition techniques. Spectrochim. Acta A Mol. Biomol. Spettrosc. 2015, 151, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shao, M.; Zhang, J.; Fu, L.L.; Lu, S.H. Distributions and source apportionment of ambient volatile organic compounds in Beijing city, China. J. Environ. Sci. Health 2005, 40, 1843–1860. [Google Scholar] [CrossRef] [PubMed]
- Carslaw, D.C.; Ropkins, K. openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
Industrial Sectors | District (District Number in Figure 1) | Total | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Huangpi (1) | Dongxihu (2) | Caidian (3) | Jingkai (Hannan) (4) | Jiangxia (5) | Hongshan (6) | Jiang’an (7) | Jianghan (8) | Qiaokou (9) | Hanyang (10) | Wuchang (11) | Qingshan (12) | Xinzhou (13) | ||
Automotive | 2 | 1 | 10 | 1 | 20 | 16 | 10 | 14 | 10 | 92 | ||||
Food and beverage | 2 | 2 | 1 | 1 | 3 | 10 | ||||||||
Pharmaceutical | 1 | 6 | 5 | 3 | 26 | |||||||||
Electric and electronics | 1 | 1 | 5 | 1 | 3 | 23 | ||||||||
Waste/wastewater treatment plants | 3 | 4 | 1 | 5 | 3 | 4 | 1 | 4 | 2 | 1 | 5 | 40 | ||
Chemical and plastic | 3 | 6 | 7 | 11 | 1 | 1 | 2 | 2 | 3 | 44 | ||||
Oil industry | 2 | 1 | 1 | 3 | 1 | 3 | 2 | 20 | ||||||
Metals and nonmetals industry | 25 | 1 | 3 | 3 | 5 | 1 | 3 | 2 | 43 | |||||
Equipment and furniture | 8 | 5 | 7 | 9 | 6 | 2 | 1 | 3 | 1 | 10 | 5 | 68 | ||
Packaging and printing industry | 5 | 40 | 11 | 17 | 4 | 3 | 9 | 37 | 8 | 10 | 7 | 3 | 5 | 165 |
Shipping industry | 6 | 1 | 1 | 1 | 1 | 10 | ||||||||
Thermal power plants | 2 | 1 | 2 | 1 | 7 | |||||||||
Other sectors | 1 | 1 | 3 | 1 | 2 | 1 | 3 | |||||||
Total | 57 | 68 | 30 | 71 | 26 | 28 | 16 | 53 | 22 | 42 | 22 | 26 | 27 | 562 |
Alkanes (28) | Alkenes (13) | Aromatics (16) | |
---|---|---|---|
Ethane | 2,2-Dimethylbutane | Ethylene | Benzene |
Propane | 2,3-Dimethylbutane | Propylene | Toluene |
Isobutane | 2,3-Dimethylpentane | Trans-2-butene | Ethylbenzene |
n-Butane | 2,4-Dimethylpentane | 1-Butene | m/p-Xylene |
Isopentane | 2,2,4-Trimethylpentane | Cis-2-butene | o-Xylene |
n-Pentane | 2,3,4-Trimethylpentane | 1,3-Butadiene | Isopropylbenzene |
n-Hexane | Methylcyclopentane | 1-Pentene | n-Propylbenzene |
Nonane | 2-Methylpentane | trans-2-Pentene | m-ethyltoluene |
n-Heptane | 3-Methylpentane | Isoprene | p-ethyltoluene |
n-octane | Methylcyclohexane | cis-2-Pentene | 1,3,5-Trimethylbenzene |
n-Decane | 2-Methylhexane | 1-Hexene | o-ethyltoluene |
n-Undecane | 3-Methylhexane | isobutylene-FID | 1,2,4-Trimethylbenzene |
Cyclopentane | 2-Methylheptane | Styrene | 1,2,3-Trimethylbenzene |
Cyclohexane | 3-Methylheptane | Alkynes (1) | m-diethylbenzene |
Acethylene | p-diethylbenzene | ||
Others (1) | |||
Acetonitrile | |||
Carbonyls (12) | Halocarbons (33) | ||
Acrolein | Freon 114 | Trichloroethylene | |
Propanal | Freon 11 | 1,2-Dichloropropane | |
Acetone | Freon 113 | Bromodichloromethane | |
MTBE | Freon 12 | trans-1,3-Dichloropropene | |
Methacrolein | Freon 22 | Iodomethane | |
n-Butanal | Chloromethane | cis-1,3-Dichloropropene | |
Methylvinylketone | Vinylchloride | 1,1,2-Trichloroethane | |
Methylethylketone | Bromomethane | Tetrachloroethylene | |
2-Pentanone | Chloroethane | 1,2-Dibromoethane | |
Pentanal | 1,1-Dichloroethene | chlorobenzene | |
3-Pentanone | Dichloromethane | 1,3-Dichlorobenzene | |
Hexanal | 1,1-Dichloroethane | 1,4-Dichlorobenzene | |
cis-1,2-Dichloroethene | Benzylchloride | ||
Chloroform | 1,2-Dichlorobenzene | ||
1,1,1-Trichloroethane | Bromoform | ||
Carbontetrachloride | 1,1,2,2-Tetrachloroethane | ||
1,2-Dichloroethane |
Wuhan | Ziyang a | Guangzhou b | Hangzhou c | Beijing d | Hong Kong e | London (UK) f | Houston (USA) g | |
---|---|---|---|---|---|---|---|---|
Ethane | 5.36 | 17.2 | 5.6 | 3.4 | 4.37 | 2.1 | 7.1 | 12.41 |
Ethylene | 3.94 | 9 | 6.8 | 3.1 | 1.7 | 4.2 | ||
Propane | 4.32 | 5.7 | 10.7 | 1.6 | 2.44 | 2.1 | 2.7 | 16.18 |
Aceylene | 2.91 | 5.6 | 7.3 | 2.6 | 2.17 | 2.8 | 1.33 | |
n-Butane | 2.29 | 1.8 | 5.2 | 0.6 | 1.43 | 1.6 | 2 | 9.22 |
Benzene | 0.96 | 1.8 | 2.4 | 1.3 | 0.82 | 0.9 | 0.32 | 2.01 |
Toluene | 1.07 | 0.8 | 7 | 2.5 | 1.33 | 5.7 | 1 | 5.57 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Zhang, Z.; Acciai, C.; Zhong, Z.; Huang, Z.; Lonati, G. An Integrated Method for Factor Number Selection of PMF Model: Case Study on Source Apportionment of Ambient Volatile Organic Compounds in Wuhan. Atmosphere 2018, 9, 390. https://doi.org/10.3390/atmos9100390
Wang F, Zhang Z, Acciai C, Zhong Z, Huang Z, Lonati G. An Integrated Method for Factor Number Selection of PMF Model: Case Study on Source Apportionment of Ambient Volatile Organic Compounds in Wuhan. Atmosphere. 2018; 9(10):390. https://doi.org/10.3390/atmos9100390
Chicago/Turabian StyleWang, Fenjuan, Zhenyi Zhang, Costanza Acciai, Zhangxiong Zhong, Zhaokai Huang, and Giovanni Lonati. 2018. "An Integrated Method for Factor Number Selection of PMF Model: Case Study on Source Apportionment of Ambient Volatile Organic Compounds in Wuhan" Atmosphere 9, no. 10: 390. https://doi.org/10.3390/atmos9100390
APA StyleWang, F., Zhang, Z., Acciai, C., Zhong, Z., Huang, Z., & Lonati, G. (2018). An Integrated Method for Factor Number Selection of PMF Model: Case Study on Source Apportionment of Ambient Volatile Organic Compounds in Wuhan. Atmosphere, 9(10), 390. https://doi.org/10.3390/atmos9100390