Decision Science Perspectives on Hurricane Vulnerability: Evidence from the 2010–2012 Atlantic Hurricane Seasons
Abstract
:1. Introduction
2. Materials and Methods
- Objective storm and warning knowledge (e.g., knowledge of storm strength, time until impact, current warnings)
- Threat perceptions (e.g., judged probability of hurricane-force winds and damage due to wind, surge flooding, or rain flooding)
- Information sources (e.g., media usage and exposure to forecast graphics)
- Short-term preparation actions and evacuation intentions (e.g., storm-related purchases of food, water, batteries; filling the car with gasoline)
- Longer-term preparation (e.g., supplies on hand before the storm, ownership of flood insurance)
- Expectations of government aid
- Socio-demographics and previous storm experience
3. Results
3.1. Temporal and Spatial Myopia
3.2. Mental Models
3.3. Objective versus Subjective Probability Estimates
3.4. Prior Storm Experience
3.5. Social Factors
4. Discussion
4.1. Forecast Phase
4.2. Preparation Phase
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pielke, R.A., Jr.; Landsea, C.W. Normalized hurricane damages in the United States: 1925–1995. Weather Forecast. 1997, 13, 6216–6231. [Google Scholar] [CrossRef]
- Baker, E.J.; Broad, K.; Czajkowski, J.; Meyer, R.; Orlove, B. Risk Perceptions and Preparedness among Mid-Atlantic Coastal Residents in Advance of Hurricane Sandy; Working Paper #2012-18; Risk Management and Decision Processes Center, The Wharton School, University of Pennsylvania: Philadelphia, PA, USA, 2012. [Google Scholar]
- Meyer, R.J.; Baker, J.; Broad, K.; Czajkowski, J.; Orlove, B. The dynamics of hurricane risk perception: Real-time evidence from the 2012 Atlantic hurricane season. Bull. Am. Meteorol. Soc. 2014, 9. [Google Scholar] [CrossRef]
- Thaler, R.H.; Sunstein, C.R. Nudge: Improving Decisions about Health, Wealth, and Happiness, 1st ed.; Yale University Press: New Haven, CT, USA, 2008; ISBN 9780300122237. [Google Scholar]
- Tversky, A.; Kahneman, D. Availability: A heuristic for judging frequency and probability. Cognit. Psychol. 1973, 5, 207–232. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. The framing of decisions and the psychology of choice. Science 1981, 211, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Tversky, A.; Kahneman, D. Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychol. Rev. 1983, 90, 293–315. [Google Scholar] [CrossRef]
- Frederick, S.; Loewenstein, G.; O’Donoghue, T. Time discounting and time preference: A critical review. In Time and Decision: Economic and Psychological Perspectives on Intertemporal Choice, 1st ed.; Loewenstein, G., Read, D., Baumeister, R., Eds.; Russell Sage Foundation: New York, NY, USA, 2003; pp. 13–86. ISBN 0-87154-549-7. [Google Scholar]
- Trope, Y.; Liberman, N. Temporal construal and time-dependent changes in preference. J. Pers. Soc. Psychol. 2000, 79, 876–889. [Google Scholar] [CrossRef] [PubMed]
- Trope, Y.; Liberman, N. Temporal construal. Psychol. Rev. 2003, 110, 403–421. [Google Scholar] [CrossRef] [PubMed]
- Trope, Y.; Liberman, N. Construal-level theory of psychological distance. Psychol. Rev. 2010, 117, 440–463. [Google Scholar] [CrossRef] [PubMed]
- Buehler, R.; Griffin, D.; Ross, M. Exploring the “planning fallacy”: Why people underestimate their task completion times. J. Personal. Soc. Psychol. 1994, 67, 366–381. [Google Scholar] [CrossRef]
- Richetti-Masterson, K.; Horney, J. Social factors as modifiers of Hurricane Irene evacuation behavior in Beaufort County, NC. PLoS Curr. Dis. 2013. [Google Scholar] [CrossRef] [PubMed]
- Gentner, D. Psychology of mental models. In International Encyclopedia of the Social and Behavioral Sciences; Smelser, N.J., Bates, P.B., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2002; pp. 9683–9687. ISBN 978-0-08-043076-8. [Google Scholar]
- Johnson-Laird, P.N. The history of mental models. In Psychology of Reasoning: Theoretical and Historical Perspective, 1st ed.; Manktelow, K., Chung, M.C., Eds.; Psychology Press: New York, NY, USA, 2004; pp. 179–212. ISBN 9781841693101. [Google Scholar]
- Broad, K.; Leiserowitz, A.; Weinkle, J.; Steketee, M. Misinterpretations of the “Cone of Uncertainty” in Florida during the 2004 hurricane season. Bull. Am. Meteorol. Soc. 2007, 88, 651–667. [Google Scholar] [CrossRef]
- Morrow, B.H.; Lazo, J.K.; Rhome, J.; Feyen, J. Improving storm surge risk communication: Stakeholder perspectives. Bull. Am. Meteorol. Soc. 2015, 12, 35–48. [Google Scholar] [CrossRef]
- Bostrom, A.; Morss, R.E.; Lazo, J.K.; Demuth, J.L.; Lazrus, H. A mental models study of hurricane forecast and warning production, communication, and decision-making. Weather Clim. Soc. 2016, 8, 111–129. [Google Scholar] [CrossRef]
- Wei, H.-L.; Lindell, M.K.; Prater, C.S. ‘Certain death’ from storm surge: A comparative study of household responses to warnings about Hurricanes Rita and Ike. Weather Clim. Soc. 2014, 6, 425–433. [Google Scholar] [CrossRef]
- Huang, S.-K.; Lindell, M.K.; Prater, C.S.; Wu, H.-C.; Siebeneck, L.K. Household evacuation decision making in response to Hurricane Ike. Nat. Hazards Rev. 2012, 13, 283–296. [Google Scholar] [CrossRef]
- Huang, S.-K.; Lindell, M.L.; Prater, C.S. Multistage model of hurricane evacuation decision: Empirical study of Hurricanes Katrina and Rita. Nat. Hazards Rev. 2017, 18. [Google Scholar] [CrossRef]
- Eisenman, D.P.; Cordasco, K.M.; Asch, S.; Golden, J.F.; Glik, D. Disaster planning and risk communication with vulnerable communities: Lessons from Hurricane Katrina. Am. J. Public Health 2007, 97. [Google Scholar] [CrossRef] [PubMed]
- Sutton, J.; Woods, C. Tsunami warning message interpretation and sense making: Focus group insights. Weather Clim. Soc. 2016, 8, 389–398. [Google Scholar] [CrossRef]
- Baker, E.J. Hurricane evacuation behavior. Int. J. Mass Emerg. Disasters 1991, 9, 287–310. [Google Scholar]
- Huang, S.-K.; Lindell, M.K.; Prater, C.S. Who leaves and who stays? A review and statistical meta-analysis of hurricane evacuation studies. Environ. Behav. 2016, 48, 991–1029. [Google Scholar] [CrossRef]
- Sadri, A.M.; Ukkusuri, S.V.; Gladwin, H. The role of social networks and information sources on hurricane evacuation decision making. Nat. Hazards Rev. 2017, 18. [Google Scholar] [CrossRef]
- Gigerenzer, G.; Hertwig, R.; van den Broek, E.; Fasolo, B.; Katsikopoulos, K.V. ‘A 30% chance of rain tomorrow’: How does the public understand probabilistic weather forecasts? Risk Anal. Int. J. 2005, 25, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Carr, R.; Montz, B.; Maxfield, K.; Hoekstra, S.; Semmens, K.; Goldman, E. Effectively communicating risk and uncertainty to the public: Assessing the National Weather Service’s flood forecast and warning tools. Bull. Am. Meteorol. Soc. 2016, 97, 1649–1665. [Google Scholar] [CrossRef]
- Budescu, D.V.; Broomell, S.; Por, H. Improving communication of uncertainty in the reports of the Intergovernmental Panel on Climate Change. Psychol. Sci. 2009, 20, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Budescu, D.V.; Wallsten, T.S. Consistency in interpretation of probabilistic phrases. Organ. Behav. Hum. Decis. Process. 1985, 36, 391–405. [Google Scholar] [CrossRef]
- Patt, A.G.; Schrag, D.P. Using specific language to describe risk and probability. Clim. Chang. 2003, 61, 17–30. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 1979, 47, 263–291. [Google Scholar] [CrossRef]
- Hertwig, R.; Barron, G.; Weber, E.U.; Erev, I. Decisions from experience and the effect of rare events in risky choice. Psychol. Sci. 2004, 15, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Ruginski, I.T.; Boone, A.P.; Padilla, L.M.; Liu, L.; Heydari, N.; Kramer, H.S.; Hegarty, M.; Thompson, W.B.; House, D.H.; Creem-Regehr, S.H. Non-expert interpretations of hurricane forecast uncertainty visualizations. Spat. Cogn. Comput. 2016, 16, 154–172. [Google Scholar] [CrossRef]
- Spiegelhalter, D.; Pearson, M.; Short, I. Visualizing uncertainty about the future. Science 2011, 333, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Definition of the NHC Track Forecast Cone. Available online: http://www.nhc.noaa.gov/aboutcone.shtml (accessed on 31 August 2017).
- Wu, H.-C.; Lindell, M.K.; Prater, C.S. Strike probability judgments and protective action recommendations in a dynamic hurricane tracking task. Nat. Hazards 2015, 79, 355–380. [Google Scholar] [CrossRef]
- Wu, H.-C.; Lindell, M.K.; Prater, C.S.; Samuelson, C.D. Effects of track and threat information on judgments of hurricane strike probability. Risk Anal. 2014, 34, 1025–1039. [Google Scholar] [CrossRef] [PubMed]
- Zarcadoolas, C.; Vaughon, W. NSHM Product Usability Testing—Public Map and Web Content; How to Health Literacy, LLC: New York, NY, USA, 2016.
- Ash, K.D.; Schumann, R.L.; Bowser, G.C. Tornado warning trade-offs: Evaluating choices for visually communicating risk. Weather Clim. Soc. 2014, 6, 104–118. [Google Scholar] [CrossRef]
- Lindell, M.K.; Huang, S.-K.; Wei, H.-L.; Samuelson, C.D. Perceptions and expected immediate reactions to tornado warning polygons. Nat. Hazards 2016, 80, 683–707. [Google Scholar] [CrossRef]
- Martin, I.M.; Bender, H.; Raish, C. What motivates individuals to protect themselves from risks: The case of wildland fires. Risk Anal. 2007, 27, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Trumbo, C.; Meyer, M.A.; Marlatt, H.; Peek, L.; Morrissey, B. An assessment of change in risk perception and optimistic bias for hurricanes among Gulf Coast residents. Risk Anal. 2014, 34, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Xian, S.; Lin, N.; Kunreuther, H.; Jackson, N.; Goidel, K. Understanding the effects of past flood events and perceived and estimated flood risks on individuals’ voluntary flood insurance purchase behavior. Water Res. 2017, 108, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Kates, R.W. Hazard and Choice Perception in Flood Plain Management; University of Chicago Department of Geography Research Paper No. 78; University of Chicago: Chicago, IL, USA, 1962. [Google Scholar]
- Dunn, P.T.; Ahn, A.Y.E.; Bostrom, A.; Vidale, J.E. Perceptions of earthquake early warnings on the U.S. West Coast. Int. J. Disaster Risk Reduct. 2016, 20, 112–122. [Google Scholar] [CrossRef]
- Meyer, R.; Broad, K.; Orlove, B.; Petrovic, N. Dynamic simulation as an approach to understanding hurricane risk response: Insights from the Stormview lab. Risk Anal. 2013, 33, 1532–1552. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Patt, A. Disaster warning response: The effects of different types of personal experience. Nat. Hazards 2012, 60, 409–423. [Google Scholar] [CrossRef]
- Lindell, M.K.; Perry, R.W. Household adjustment to earthquake hazard: A review of research. Environ. Behav. 2000, 32, 461–501. [Google Scholar] [CrossRef]
- Lindell, M.K. North American cities at risk: Household responses to environmental hazards. In Cities at Risk: Living with Perils in the 21st Century; Joffe, H., Rossetto, T., Adams, J., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 109–130. [Google Scholar]
- Halpern-Felsher, B.L.; Millstein, S.G.; Ellen, J.M.; Adler, N.E.; Tschann, J.M.; Biehl, M. The role of behavioral experience in judging risks. Health Psychol. 2001, 20, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Dillon, R.L.; Tinsley, C.H.; Cronin, M. Why near-miss events can decrease an individual’s protective response to hurricanes. Risk Anal. 2011, 31, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Demuth, J.L.; Morss, R.E.; Lazo, J.K. The effects of past hurricane experiences on evacuation intentions through risk perception and efficacy beliefs: A mediation analysis. Weather Clim. Soc. 2016, 8, 327–344. [Google Scholar] [CrossRef]
- Wood, M.M.; Mileti, D.S.; Kano, M.; Kelley, M.M.; Regan, R.; Bourque, L.B. Communicating actionable risk for terrorism and other hazards. Risk Anal. 2012, 32, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Mileti, D.S.; Fitzpatrick, C. The causal sequence of risk communication in the Parkfield Earthquake Prediction Experiment. Risk Anal. 1992, 12, 393–400. [Google Scholar] [CrossRef]
- Mileti, D.S.; Darlington, J.D. The role of searching in shaping reactions to earthquake risk information. Soc. Probl. 1997, 44, 89–103. [Google Scholar] [CrossRef]
- Mileti, D.S.; Peek, L. The social psychology of public response to warnings of a nuclear power plant accident. J. Hazard. Mater. 2000, 75, 181–194. [Google Scholar] [CrossRef]
- Weber, E.U. Perception and expectation of climate change: Precondition for economic and technological adaptation. In Psychological and Ethical Perspectives to Environmental and Ethical Issues in Management; Bazerman, M., Messick, D., Tenbrunsel, A., Wade-Benzoni, K., Eds.; Jossey-Bass: San Francisco, CA, USA, 1997; pp. 314–341. [Google Scholar]
- Montz, B.E.; Tobin, G.A. Livin’ large with levees: Lessons learned and lost. Nat. Hazards Rev. 2008, 9, 150–157. [Google Scholar] [CrossRef]
- Bohensky, E.L.; Leitch, A.M. Framing the flood: A media analysis of themes of resilience in the 2011 Brisbane flood. Reg. Environ. Chang. 2014, 14, 475–488. [Google Scholar] [CrossRef]
- Bradford, R.A.; O’Sullivan, J.J.; van der Craats, I.M.; Krywkow, J.; Rotko, P.; Aaltonen, J.; Bonaiuto, M.; De Dominicis, S.; Waylen, K.; Schelfaut, K. Risk perception—Issues for flood management in Europe. Nat. Hazards Earth Syst. Sci. 2012, 12, 2299–2309. [Google Scholar] [CrossRef]
- Terpstra, T. Emotions, trust, and perceived risk: Affective and cognitive routes to flood preparedness behavior. Risk Anal. Int. J. 2011, 31, 1658–1675. [Google Scholar] [CrossRef] [PubMed]
- Viglione, A.; Giuliano, D.B.; Luigia, B.; Linda, K. Insights from socio-hydrology modelling on dealing with flood risk—Roles of collective memory, risk-taking attitude and trust. J. Hydrol. 2014, 518, 71–82. [Google Scholar] [CrossRef]
- Johnson, E.J.; Shu, S.B.; Dellaert, B.G.C.; Fox, C.; Goldstein, D.G.; Häubl, G.; Larrick, R.P.; Payne, J.W.; Peters, E.; Schkade, D.; et al. Beyond nudges: Tools of a choice architecture. Market. Lett. 2012, 23, 487–504. [Google Scholar] [CrossRef]
- Johnson, E.J.; Goldstein, D.G. Defaults and donation decisions. Transplantation 2004, 78, 1713–1716. [Google Scholar] [CrossRef] [PubMed]
- Beshears, J.; Choi, J.J.; Laibson, D.; Madrian, B.C. Simplification and Saving; Working Paper 12659; National Bureau of Economic Research: Cambridge, MA, USA, 2006. [Google Scholar]
- Pichert, D.; Katsikopoulos, K.V. Green defaults: Information presentation and pro-environmental behaviour. J. Environ. Psychol. 2008, 28, 63–73. [Google Scholar] [CrossRef]
- Lindell, M.K.; Lu, J.C.; Prater, C.S. Household decision making and evacuation in response to Hurricane Lili. Nat. Hazards Rev. 2005, 6, 171–179. [Google Scholar] [CrossRef]
- Cuite, C.L.; Shwom, R.L.; Hallman, W.K.; Morss, R.E.; Demuth, J.L. Improving coastal storm evacuation messages. Weather Clim. Soc. 2017, 9, 155–170. [Google Scholar] [CrossRef]
- Surging Seas: Maps & Tools. Available online: sealevel.climatecentral.org/maps (accessed on 19 January 2018).
- Kasperson, R.E.; Renn, O.; Slovic, P.; Brown, H.S.; Emel, J.; Goble, R.; Kasperson, J.X.; Ratick, S. The social amplification of risk: A conceptual framework. Risk Anal. 1988, 8, 177–187. [Google Scholar] [CrossRef]
- Larrick, R.P.; Soll, J.B. The MPG illusion. Science 2008, 320, 1593–1594. [Google Scholar] [CrossRef] [PubMed]
- Bruine de Bruin, W.; Bostrom, A. Assessing what to address in science communication. Proc. Natl. Acad. Sci. USA 2013, 110, 14062–14068. [Google Scholar] [CrossRef] [PubMed]
- ReadySanDiego Know Your Hazards Tool. Available online: http://www.readysandiego.org/know-your-hazards/ (accessed on 31 August 2017).
- Meyer, R.; Kunreuther, H. The Ostrich Paradox: Why We Underprepare for Disasters, 1st ed.; Wharton Digital Press: Philadelphia, PA, USA, 2017; ISBN 978-1-61363-080-8. [Google Scholar]
- Ge, Y.; Peacock, W.G.; Lindell, M.K. Florida households’ expected responses to hurricane hazard mitigation incentives. Risk Anal. 2011, 31, 1676–1691. [Google Scholar] [CrossRef] [PubMed]
Demographic Variable | Earl Survey Respondents (%) N = 633 | Irene Survey Respondents (%) N = 805 | Isaac Survey Respondents (%) N = 355 | Sandy Survey Respondents (%) N = 538 |
---|---|---|---|---|
Gender | ||||
Female | 67 | 67 | 64 | 59 |
Male | 33 | 33 | 36 | 40 |
Age | ||||
under 30 | 4 | 6 | 3 | 4 |
30–45 | 15 | 17 | 11 | 14 |
46–60 | 27 | 26 | 41 | 27 |
61–70 | 23 | 24 | 22 | 23 |
71–80 | 17 | 14 | 12 | 18 |
over 80 | 8 | 8 | 5 | 8 |
Refused to Answer | 6 | 5 | 5 | 6 |
Ethnicity | ||||
White/Caucasian | 83 | 78 | 83 | 83 |
Black/African American | 9 | 10 | 13 | 8 |
Other | 4 | 7 | 2 | 4 |
Refused to Answer | 4 | 5 | 2 | 4 |
Income | ||||
Less than $25,000 | no data collected | 9 | 11 | 5 |
$25,000–$79,000 | 29 | 34 | 21 | |
More than $80,000 | 21 | 21 | 23 | |
Don’t Know/Refused | 41 | 34 | 50 | |
Education | ||||
Some high school/high school graduate | 26 | 26 | 25 | 26 |
Some college/college graduate | 52 | 53 | 53 | 48 |
Postgraduate | 16 | 14 | 14 | 20 |
Other/refused | 6 | 7 | 8 | 5 |
Homeowner Status (%) | ||||
Own | 87 | 82 | 94 | 89 |
Rent | 11 | 17 | 5 | 9 |
Other | 2 | 1 | 1 | 2 |
Home Type | ||||
Single Family Home | 77 | 74 | 93 | 81 |
Duplex or Triplex Home | 4 | 5 | 1 | 7 |
Multi-family building (4 stories or less)—apartment/condo | 7 | 10 | 3 | 6 |
Multi-family building (4 stories or more)—apartment/condo | 1 | 6 | 1 | 3 |
Mobile or Manufactured Home | 10 | 4 | 2 | 3 |
Don’t Know/Refuse | 1 | 1 | 0 | 0 |
Previously Experienced Hurricane Damage, in current or previous home | 49 | 39 | 83 | 27 |
Problem | Example | Associated Decision Bias/Obstacle | Solution |
---|---|---|---|
Insurance | Lack of insurance and lack of knowledge of insurance coverage | Myopia; Inappropriate mental models | Make having flood insurance the default, requiring uninterested people to opt-out, rather than opt-in |
Investment in hurricane preparation | Shutters, roof secure | Myopia; Single-action bias | Making hurricane preparation (e.g., having emergency kit, shutters) the default; providing incentives |
Post-event plan | evacuation plan | Myopia; Construal-level theory | Track-your-risk websites that encourage (and explain) making evacuation plan |
Problem | Example | Associated Decision Bias/Obstacle | Cause/Solution |
---|---|---|---|
Misplaced attention to select hazard characteristic | Over-focus on wind speed, under-focus on flooding | Inappropriate mental model; Outsized influence of prior experience (availability bias) | Current products sometimes lack appropriate information or have too much information; need to automatically tailor information for specific locales/situations |
Disconnect between hurricane landing risk probability vs. personal risk probability | Buying shutters, but not putting up; overestimate likelihood of strike early but underestimate as event unfolds | Objective vs. subjective probability | Different formats for expressing risk probability (damage vs. likelihood of landfall); visual displays of risk combined with verbal explanations |
Limited preparatory actions | Some water, batteries, but not many other possible actions | Social factors; Single-action bias | Checklist |
Poor impact duration estimate | Extended power outage | Inappropriate mental models | Checklist, narratives (examples of likely impacts from previous similar storms) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milch, K.; Broad, K.; Orlove, B.; Meyer, R. Decision Science Perspectives on Hurricane Vulnerability: Evidence from the 2010–2012 Atlantic Hurricane Seasons. Atmosphere 2018, 9, 32. https://doi.org/10.3390/atmos9010032
Milch K, Broad K, Orlove B, Meyer R. Decision Science Perspectives on Hurricane Vulnerability: Evidence from the 2010–2012 Atlantic Hurricane Seasons. Atmosphere. 2018; 9(1):32. https://doi.org/10.3390/atmos9010032
Chicago/Turabian StyleMilch, Kerry, Kenneth Broad, Ben Orlove, and Robert Meyer. 2018. "Decision Science Perspectives on Hurricane Vulnerability: Evidence from the 2010–2012 Atlantic Hurricane Seasons" Atmosphere 9, no. 1: 32. https://doi.org/10.3390/atmos9010032