Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission
Abstract
:1. Introduction
2. Observations
3. Approach
3.1. MFRSR-Based Retrieval
3.2. Composite-Based Output
3.3. MODIS-Derived Albedo
4. Results
5. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Myhre, G.; Myhre, A. Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes. Climate 2003, 16, 1511–1524. [Google Scholar] [CrossRef]
- Ghimire, B.; Williams, C.A.; Masek, J.; Gao, F.; Wang, Z.; Schaaf, C.; He, T. Global albedo change and radiative cooling from anthropogenic land cover change, 1700 to 2005 based on MODIS, land use harmonization, radiative kernels, and reanalysis. Geophys. Res. Lett. 2014, 41, 9087–9096. [Google Scholar] [CrossRef]
- Wendisch, M.; Pilewskie, P.; Jäkel, E.; Schmidt, S.; Pommier, J.; Howard, S.; Jonsson, H.H.; Guan, H.; Schröder, M.; Mayer, B. Airborne measurements of areal spectral surface albedo over different sea and land surfaces. J. Geophys. Res. 2004, 109, D08203. [Google Scholar] [CrossRef]
- Liang, S.; Fang, H.; Chen, M.; Shuey, C.; Walthall, C.; Doughtry, C.; Morisette, J.; Schaaf, C.; Strahler, A. Validating MODIS land surface reflectance and albedo products: Methods and preliminary results. Remote Sens. Environ. 2002, 83, 149–162. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.; Strahler, A.H.; Chopping, M.J.; Román, M.O.; Shuai, Y.; Woodcock, C.E.; Hollingerg, D.Y.; Fitzjarrald, D.R. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ. 2014, 140, 60–77. [Google Scholar] [CrossRef]
- Wang, K.; Liang, S.; Schaaf, C.L.; Strahler, A.H. Evaluation of Moderate Resolution Imaging Spectroradiometer land surface visible and shortwave albedo products at FLUXNET sites. J. Geophys. Res. 2010, 115, D17107. [Google Scholar] [CrossRef]
- Cescatti, A.; Marcolla, B.; Vannan, S.K.S.; Pan, J.Y.; Román, M.O.; Yang, X.; Ciais, P.; Cook, R.B.; Law, B.E.; Matteucci, G.; et al. Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sens. Environ. 2012, 121, 323–334. [Google Scholar] [CrossRef]
- Kassianov, E.; Barnard, J.; Flynn, C.; Riihimaki, L.; Michalsky, J.; Hodges, G. Areal-averaged spectral surface albedo from ground-based transmission data alone: Toward an operational retrieval. Atmosphere 2014, 5, 597–621. [Google Scholar] [CrossRef]
- Augustine, J.A.; Cornwall, C.R.; Hodges, G.B.; Long, C.N.; Medina, C.I.; DeLuisi, J.J. An automated method of MFRSR calibration for aerosol optical depth analysis with application to an Asian dust outbreak over the United States. J. Appl. Meteor. 2003, 42, 266–278. [Google Scholar] [CrossRef]
- Michalsky, J.; Hodges, G.; Field, B. Measured spectral albedo–Four years of data from the Western U.S. Prairie. Geophys. Res. Atmos. 2013, 118, 813–825. [Google Scholar] [CrossRef]
- Miller, M.A.; Nitschke, K.; Ackerman, T.P.; Ferrell, W.R.; Hickmon, N.; Ivey, M. The ARM Mobile Facilities. In The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years; Meteorological Monographs; American Meteorological Society: Boston, MA, USA, 2016. [Google Scholar] [CrossRef]
- The AMF deployment. Available online: https://www.arm.gov/research/campaigns/amf2009clapmbl (accessed on 30 June 2017).
- Dong, X.; Xi, B.; Kennedy, A.; Minnis, P.; Wood, R. A 19-month record of marine aerosol–cloud–radiation properties derived from DOE ARM Mobile Facility Deployment at the Azores. Part I: Cloud fraction and single-layered MBL cloud properties. Climate 2014, 27, 3665–3682. [Google Scholar] [CrossRef]
- Wood, R.; Wyant, M.; Bretherton, C.S.; Rémillard, J.; Kollias, P.; Fletcher, J.; Stemmler, J.; de Szoeke, S.; Yuter, S.; Miller, M.; et al. Clouds, aerosols, and precipitation in the marine boundary layer: An ARM Mobile Facility deployment. Bull. Am. Meteor. Soc. 2015, 96, 419–440. [Google Scholar] [CrossRef]
- Jin, Z.; Charlock, T.P.; Smith, W.L., Jr.; Rutledge, K. A parameterization of ocean surface albedo. Geophys. Res. Lett. 2004, 31, L22301. [Google Scholar] [CrossRef]
- McFarlane, S.; Gaustad, K.; Mlawer, E.; Long, C.; Delamere, J. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility. Atmos. Meas. Tech. 2011, 4, 1713–1733. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Melnikova, I.N.; Cracknell, A.P.; Tzanis, C.; Vasilyev, A.V. New spectral functions of the near-ground albedo derived from aircraft diffraction spectrometer observations. Atmos. Chem. Phys. 2014, 14, 6953–6965. [Google Scholar] [CrossRef]
- Eastern North Atlantic (ENA). Available online: https://www.flickr.com/photos/armgov/sets/72157629622837705 (accessed on 30 June 2017).
- Sun, L.; Schulz, K. The improvement of land cover classification by thermal remote sensing. Remote Sens. 2015, 7, 8368–8390. [Google Scholar] [CrossRef]
- Oleson, K.W.; Lawrence, D.M.; Bonan, G.B.; Drewniak, B.; Huang, M.; Koven, C.D.; Levis, S.; Li, F.; Riley, W.J.; Subin, Z.M.; et al. Technical description of version 4.5 of the Community Land Model (CLM); NACR/TN-487+STR/NACR Technical Note; National Center for Atmospheric Research: Boulder, CO, USA, 2013; p. 420. [Google Scholar]
- Gao, F.; He, T.; Wang, Z.; Ghimire, B.; Shuai, Y.; Masek, J.; Schaaf, C.; Williams, C. Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products. Appl. Remote Sens. 2014, 8, 15. [Google Scholar] [CrossRef]
- Rowe, C.M. Incorporating landscape heterogeneity in land surface albedo models. Geophys. Res. 1993, 98, 5037–5043. [Google Scholar] [CrossRef]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A research and Teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteor. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef]
- ASTER Spectral Library. Available online: http://speclib.jpl.nasa.gov/ (accessed on 30 June 2017).
- Barnes, B.B.; Hu, C.; Schaeffer, B.A.; Lee, Z.; Palandro, D.A.; Lehrter, J.C. MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination. Remote Sens. Environ. 2013, 134, 377–391. [Google Scholar] [CrossRef]
- Liu, S.; Roujean, J.L.; Kaptué Tchuenté, A.; Calvet, J.C.; Ceamanos, X. A parameterization of SEVIRI and MODIS daily surface albedo with soil moisture: Calibration and validation over southwestern France. Remote Sens. Environ. 2014, 144, 137–151. [Google Scholar] [CrossRef]
- Schwendeman, M.; Thomson, J. Observations of whitecap coverage and the relation to wind stress, wave slope, and turbulent dissipation. Geophys. Res. Oceans. 2015, 120, 8346–8363. [Google Scholar] [CrossRef]
- Whitlock, C.H.; Bartlett, D.S.; Gurganus, E.A. Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols. Geophys. Res. Lett. 1982, 9, 719–722. [Google Scholar] [CrossRef]
- The MODIS Product MCD43C2 v005. Available online: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd43c2 (accessed on 30 June 2017).
- Gao, F.; Schaff, C.B.; Strahler, A.H.; Roesch, A.; Lucht, W.; Dickinson, R. MODIS bi-directional reflectance distribution function and albedo Climate Modeling Grid products and the variability of albedo for major global vegetation types. Geophys. Res. 2005, 110, D01104. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.P.; et al. First operational BRDF albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Liang, S.; Strahler, A.H.; Walthall, C.W. Retrieval of land surface albedo from satellite observations: A simulation study. Appl. Meteorol. 1999, 38, 712–725. [Google Scholar] [CrossRef]
- Salomon, J.G.; Strahler, A.H.; Gao, F.; Jin, Y. Validation of the MODIS bi-directional reflectance distribution function and albedo retrievals using combined observation from the Aqua and Terra platforms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1555–1564. [Google Scholar] [CrossRef]
- Coddington, O.; Schmidt, K.S.; Pilewskie, P.; Gore, W.J.; Bergstrom, R.W.; Román, M.; Redemann, J.; Russell, P.B.; Liu, J.; Schaaf, C.C. Aircraft measurements of spectral surface albedo and its consistency with ground-based and space-borne observations. Geophys. Res. 2008, 113, D17209. [Google Scholar] [CrossRef]
- MODIS albedo product (MCD43A). Available online: https://www.umb.edu/spectralmass/terra_aqua_modis/modis_brdf_albedo_product_mcd43 (accessed on 30 June 2017).
- Logan, T.; Xi, B.; Dong, X. Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores. Geophys. Res. Atmos. 2014, 119, 4859–4872. [Google Scholar] [CrossRef]
- Vermote, E.; Kotchenova, S. MODIS directional surface reflectance product: Method, error estimates and validation. In Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS; Ramachandran, B., Justice, C.O., Abrams, M.J., Eds.; Springer: New York, NY, USA, 2011; pp. 533–547. [Google Scholar]
- Hu, Y.X.; Stamnes, K. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Clim. 1993, 6, 728–742. [Google Scholar] [CrossRef]
- ARM Mobile Facilities. Available online: http://www.arm.gov/sites/amf (accessed on 30 June 2017).
Wavelength (µm) | Vegetation | Soil | Ocean |
---|---|---|---|
0.415 | 0.064 | 0.040 | 0.07 |
0.5 | 0.115 | 0.050 | 0.06 |
0.615 | 0.080 | 0.096 | 0.051 |
0.673 | 0.169 | 0.118 | 0.048 |
0.87 | 0.531 | 0.146 | 0.046 |
Wavelength | ALL | SUMMER | WINTER | |||
---|---|---|---|---|---|---|
(µm) | MODIS | MFRSR | MODIS | MFRSR | MODIS | MFRSR |
0.5 | 0.0443 | 0.0933 | 0.0465 | 0.0924 | 0.0413 | 0.0993 |
0.615 | 0.0488 | 0.0799 | 0.0512 | 0.0869 | 0.0444 | 0.0774 |
0.673 | 0.0466 | 0.0959 | 0.0497 | 0.0915 | 0.0396 | 0.110 |
0.87 | 0.196 | 0.228 | 0.200 | 0.234 | 0.193 | 0.247 |
RMSE | 0.0411 | 0.0397 | 0.0556 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassianov, E.; Barnard, J.; Flynn, C.; Riihimaki, L.; Berg, L.K.; Rutan, D.A. Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission. Atmosphere 2017, 8, 123. https://doi.org/10.3390/atmos8070123
Kassianov E, Barnard J, Flynn C, Riihimaki L, Berg LK, Rutan DA. Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission. Atmosphere. 2017; 8(7):123. https://doi.org/10.3390/atmos8070123
Chicago/Turabian StyleKassianov, Evgueni, James Barnard, Connor Flynn, Laura Riihimaki, Larry K. Berg, and David A. Rutan. 2017. "Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission" Atmosphere 8, no. 7: 123. https://doi.org/10.3390/atmos8070123
APA StyleKassianov, E., Barnard, J., Flynn, C., Riihimaki, L., Berg, L. K., & Rutan, D. A. (2017). Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission. Atmosphere, 8(7), 123. https://doi.org/10.3390/atmos8070123