Spatial Variability and Factors Influencing the Air-Sea N2O Flux in the Bering Sea, Chukchi Sea and Chukchi Abyssal Plain
Abstract
:1. Introduction
2. Methods and Study Region
2.1. Methods
2.2. Study Region and Hydrographic Setting
2.3. Saturation Anomaly
2.4. Calculation of Eddy Diffusion
2.5. Air-Sea Flux Evaluation
3. Results and Discussion
3.1. Description of N2O Distribution Patterns in the Surface Water and the Relationship with Regional Source-Sink Characteristics
3.2. Regional Processes that Influence the N2O Distribution and Air-Sea Fluxes
3.2.1. Aleutian Basin
3.2.2. Continental Shelf
3.2.3. Chukchi Abyssal Plain
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Khalil, M.A.K.; Rasmussen, R.A.; Shearer, M.J. Atmospheric nitrous oxide: Patterns of global change during recent decades and centuries. Chemosphere 2002, 47, 807–821. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2014. [Google Scholar]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Nevison, C.D.; Weiss, R.F.; Erickson, D.J., III. Global oceanic emissions of nitrous oxide. J. Geophys. Res. 1995, 100, 15809–15820. [Google Scholar] [CrossRef]
- Suntharalingam, P.; Sarmiento, J.L. Factors governing the oceanic nitrous oxide distribution: Simulations with an ocean general circulation model. Glob. Biogeochem. Cycles 2000, 14, 429–454. [Google Scholar] [CrossRef]
- Freing, A.; Wallace, D.W.R.; Bange, H.W. Global oceanic production of nitrous oxide. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Chen, L.; Zhang, J.; Li, Y. A vertical gradient of nitrous oxide below the subsurface of the Canada basin and its formation mechanisms. J. Geophys. Res. Oceans 2015, 120, 2401–2411. [Google Scholar]
- Bange, H.W.; Rapsomanikis, S.; Andreae, M.O. Nitrous oxide emissions from the Arabian Sea. Geophys. Res. Lett. 1996, 23, 3175–3178. [Google Scholar] [CrossRef]
- Bange, H.W. Gaseous nitrogen compounds (NO, N2O, N2, NH3) in the ocean. In Nitrogen in the Marine Environment, 2nd ed.; Capone, D.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 55–71. [Google Scholar]
- Hirota, A.; Ijiri, A.; Komatsu, D.D.; Ohkubo, S.B.; Nakagawa, F.; Tsunogai, U. Enrichment of nitrous oxide in the water columns in the area of the Bering and Chukchi Seas. Mar. Chem. 2009, 116, 47–53. [Google Scholar] [CrossRef]
- Kitidis, V.; Upstill-Goddard, R.C.; Anderson, L.G. Methane and nitrous oxide in surface water along the North-West Passage, Arctic Ocean. Mar. Chem. 2010, 121, 80–86. [Google Scholar]
- Zhan, L.; Chen, L.; Zhang, J.; Jinpei, Y.; Li, Y.; Wu, M. A permanent N2O sink in the Nordic Seas and its strength and possible variability over the past four decades. J. Geophys. Res. Oceans 2016, 121, 5608–5621. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Ren, J.; Li, J.; Liu, S. Distributions and sea-to-air fluxes of methane and nitrous oxide in the North East China Sea in summer. Mar. Chem. 2008, 110, 42–55. [Google Scholar] [CrossRef]
- Zhan, L.Y.; Chen, L.Q.; Zhang, J.X.; Lin, Q. A system for the automated static headspace analysis of dissolved N2O in seawater. Int. J. Environ. Anal. Chem. 2012, 93, 828–842. [Google Scholar] [CrossRef]
- Butler, J.H.; Elkins, J.W. An automated technique for the measurement of dissolved N2O in natural waters. Mar. Chem. 1991, 34, 47–61. [Google Scholar]
- Woodgate, R.A.; Aagaard, K.; Weingartner, T.J. A year in the physical oceanography of the Chukchi Sea: Moored measurements from autumn 1990–1991. Deep Sea Res. Part 2 2005, 52, 3116–3149. [Google Scholar] [CrossRef]
- Walsh, J.J.; McRoy, C.P.; Coachman, L.K.; Goering, J.J.; Nihoul, J.J.; Whitledge, T.E.; Blackburn, T.H.; Parker, P.L.; Wirick, C.D.; Shuert, P.G. Carbon and nitrogen cycling within the Bering/Chukchi Seas: Source regions for organic matter effecting AOU demands of the Arctic Ocean. Prog. Oceanogr. 1989, 22, 277–359. [Google Scholar] [CrossRef]
- Coachman, L.K.; Aagaard, K. Transports through Bering Strait: Annual and interannual variability. J. Geophys. Res. 1988, 93, 15535–15539. [Google Scholar] [CrossRef]
- Steele, M.; Morison, J.; Ermold, W.; Rigor, I.; Ortmeyer, M.; Shimada, K. Circulation of summer Pacific halocline water in the Arctic Ocean. J. Geophys. Res. Oceans 2004. [Google Scholar] [CrossRef]
- Nishino, S.; Shimada, K.; Itoh, M.; Yamamoto-Kawai, M.; Chiba, S. East–west differences in water mass, nutrient, and chlorophyll a distributions in the sea ice reduction region of the western Arctic Ocean. J. Geophys. Res. 2008. [Google Scholar] [CrossRef]
- Jones, E.P.; Anderson, L.G. On the origin of the chemical properties of the Arctic Ocean halocline. J. Geophys. Res. 1986, 91, 10759–10767. [Google Scholar] [CrossRef]
- Shimada, K.; Itoh, M.; Nishino, S.; McLaughlin, F.; Carmack, E.; Proshutinsky, A. Halocline structure in the Canada basin of the Arctic Ocean. Geophys. Res. Lett. 2005. [Google Scholar] [CrossRef]
- Weiss, R.F.; Price, B.A. Nitrous oxide solubility in water and seawater. Mar. Chem. 1980, 8, 347–359. [Google Scholar]
- Li, Y.H.; Peng, T.H.; Broecker, W.S.; Oestlund, H. The average vertical mixing coefficient for the oceanic thermocline. Tellus B 1984, 36, 212–217. [Google Scholar] [CrossRef]
- Buat-Ménard, P. Air-sea gas exchange rates: Introduction and synthesis. In The Role of Air-Sea Exchange in Geochemical Cycling; Liss, P.S., Ed.; Springer: Dordrecht, The Netherlands, 1986; pp. 113–127. [Google Scholar]
- Ho, D.T.; Law, C.S.; Smith, M.J.; Schlosser, P.; Harvey, M.; Hill, P. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations. Geophys. Res. Lett. 2006. [Google Scholar] [CrossRef]
- Wanninkhof, R. Relationship between wind speed and gas exchange. J. Geophys. Res. 1992, 97, 7373–7382. [Google Scholar] [CrossRef]
- Jiang, L.Q.; Cai, W.J.; Wanninkhof, R.; Wang, Y.; Luger, H. Air-sea CO2 fluxes on the US South Atlantic Bight: Spatial and seasonal variability. J. Geophys. Res. 2008, 113, C07019:1–C07019:17. [Google Scholar] [CrossRef]
- Asia-Pacific data-research center. Available online: http://apdrc.soest.hawaii.edu/data/data.php (accessed on 9 December 2016).
- Stabeno, P.J.; Schumacher, J.D.; Ohtani, K. The physical oceanography of the Bering Sea. In Dynamics of the Bering Sea; Loughlin, T.R., Ohtani, K., Eds.; University of Alaska Sea Grant: Fairbanks, AK, USA, 1999; pp. 1–28. [Google Scholar]
- Chen, L.; Zhang, J.; Zhan, L.; Li, Y.; Sun, H. Differences in nitrous oxide distribution patterns between the Bering Sea basin and Indian Sector of the Southern Ocean. Acta Oceanol. Sin. 2014, 33, 9–19. [Google Scholar] [CrossRef]
- Dore, J.E.; Popp, B.N.; Karl, D.M.; Sansone, F.J. A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters. Nature 1998, 396, 63–66. [Google Scholar]
- Toyoda, S.; Yoshida, N.; Miwa, T.; Matsui, Y.; Yamagishi, H.; Tsunogai, U.; Nojiri, Y.; Tsurushima, N. Production mechanism and global budget of N2O inferred from its isotopomers in the western North Pacific. Geophys. Res. Lett. 2002. [Google Scholar] [CrossRef]
- Tanaka, T.; Guo, L.; Deal, C.; Tanaka, N.; Whitledge, T.; Murata, A. N deficiency in a well-oxygenated cold bottom water over the Bering Sea shelf: Influence of sedimentary denitrification. Cont. Shelf Res. 2004, 24, 1271–1283. [Google Scholar] [CrossRef]
- Timmermans, M.L.; Proshutinsky, A.; Golubeva, E.; Jackson, J.M.; Krishfield, R.; McCall, M.; Platov, G.; Toole, J.; Williams, W.; Kikuchi, T.; et al. Mechanisms of Pacific summer water variability in the Arctic’s Central Canada basin. J. Geophys. Res. Oceans 2014, 119, 7523–7548. [Google Scholar] [CrossRef]
- Nishino, S.; Shimada, K.; Itoh, M. Use of ammonium and other nitrogen tracers to investigate the spreading of shelf waters in the western Arctic halocline. J. Geophys. Res. 2005. [Google Scholar] [CrossRef]
- Randall, K.; Scarratt, M.; Levasseur, M.; Michaud, S.; Xie, H.; Gosselin, M. First measurements of nitrous oxide in Arctic Sea ice. J. Geophys. Res. Oceans 2012. [Google Scholar] [CrossRef]
- Woodgate, R.A.; Weingartner, T.J.; Lindsay, R. Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys. Res. Lett. 2012. [Google Scholar] [CrossRef]
- Hurlburt, H.E.; Wallcraft, A.J. Dynamics of the Kuroshio/Oyashio current system using eddy-resolving models of the North Pacific Ocean. J. Geophys. Res. Atmos. 1996, 101, 941–976. [Google Scholar] [CrossRef]
Region | Stations | Longitude | Latitude | Flux 1 | Average 1 | Flux 2 | Average 2 |
---|---|---|---|---|---|---|---|
AB | BL01 | 169.4 | 52.7 | −3.8 ± 0.2 | −0.9 ± 1.8 | −1.9 ± 0.1 | −0.4 ± 1.6 |
BL03 | 170.7 | 54.0 | −0.7 ± 0.5 | −1.1 ± 0.7 | |||
BL06 | 173.7 | 56.3 | −1.3 ± 6.1 | −0.6 ± 3.2 | |||
BL07 | 175.1 | 57.4 | 1.7 ± 2.1 | 1.5 ± 1.9 | |||
BL08 | 177.6 | 58.8 | 0.0 ± 0.1 | 0.1 ± 1.9 | |||
CS | BL10 | 180.0 | 60.0 | 0.1 | 9.4 ± 1.2 | 5.2 ± 1.1 | 8.2 ± 1.4 |
BL12 | −178.9 | 60.7 | 0.1 | 3.2 ± 0.9 | |||
BL13 | −177.5 | 61.3 | 3.8 ± 0.2 | 9.1 ± 0.5 | |||
BL14 | −177.3 | 61.9 | 0.8 ± 0.6 | 2.2 ± 1.6 | |||
BL16 | −173.9 | 63.0 | 5.4 ± 0.5 | 9.1 ± 1.0 | |||
BL15 | −175.3 | 62.5 | −0.7 ± 0.8 | −1.5 ± 1.7 | |||
BM01 | −172.5 | 63.5 | 0.8 ± 0.3 | 4.6 ± 1.6 | |||
BM02 | −172.6 | 63.8 | 13.2 ± 3.2 | 9.5 ± 2.3 | |||
BM03 | −172.7 | 63.9 | 15.5 ± 3.0 | 10.3 ± 2.0 | |||
BN01 | −171.7 | 64.3 | 39.2 ± 0.7 | 22.2 ± 0.4 | |||
BN02 | −171.4 | 64.4 | 53.2 ± 4.4 | 19.4 ± 1.6 | |||
BN03 | −170.8 | 64.5 | 6.2 ± 0.1 | 13.8 ± 0.3 | |||
BN04 | −170.1 | 64.5 | 15.7 ± 2.4 | 11.1 ± 1.7 | |||
BN05 | −169.4 | 64.5 | 51.2 ± 1.9 | 19.9 ± 0.7 | |||
BN07 | −168.1 | 64.6 | 22.3 ± 2.9 | 8.7 ± 1.1 | |||
BN08 | −167.5 | 64.6 | 15 ± 1.9 | 8.8 ± 1.1 | |||
R01 | −169.0 | 66.7 | 5.2 ± 0.6 | 8.9 ± 1.0 | |||
R02 | −168.9 | 67.7 | 1.7 ± 0.5 | 5.0 ± 1.7 | |||
CC01 | −168.6 | 67.8 | 4.3 ± 0.8 | 10.6 ± 2.1 | |||
CC03 | −167.9 | 68.0 | 1.1 | 8.9 ± 0.4 | |||
CC04 | −167.5 | 68.1 | 0.5 | 6.0 ± 0.9 | |||
CC05 | −167.3 | 68.2 | 0.5 ± 0.3 | 5.2 ± 3.4 | |||
CC07 | −167.0 | 68.3 | 0.2 ± 0.1 | 0.3 ± 0.2 | |||
R03 | −168.9 | 68.6 | 2.0 ± 0.8 | 4.7 ± 2.0 | |||
R04 | −168.9 | 69.6 | 1.7 ± 0.5 | 4.4 ± 1.5 | |||
C03 | −166.5 | 69.0 | 0.1 | 8.4 ± 1.2 | |||
C05 | −164.8 | 70.7 | 12.5 ± 7.6 | 3.3 ± 2.0 | |||
C04 | −166.9 | 70.8 | 0.0 ± 0.7 | 0.0 ± 1.3 | |||
R05 | −168.8 | 71.0 | 17.3 ± 1 | 22.3 ± 1.3 | |||
CAP | SR18 | −169.0 | 81.9 | −2.7 ± 0.1 | −9.8 ± 1.6 | −5.9 ± 0.2 | −10.2 ± 1.5 |
SR14 | −169.0 | 78.0 | −2.7 ± 0.1 | −12.7 ± 0.5 | |||
SR16 | −169.0 | 80.0 | −10.3 ± 1.5 | −6.7 ± 1.0 | |||
M01 | −172.0 | 77.5 | −3.3 ± 1.1 | −8.6 ± 3.0 | |||
M04 | −172.0 | 76.0 | −32.8 ± 3 | −13.8 ± 1.2 | |||
SR12 | −169.0 | 74.0 | −1.1 ± 0.2 | −6.5 ± 1.3 | |||
M03 | −172.0 | 76.5 | −33.6 ± 3.7 | −14.9 ± 1.6 | |||
M02 | −172.0 | 77.0 | −5.7 ± 0.6 | −13.5 ± 1.4 | |||
M05 | −172.0 | 75.5 | −11.1 ± 5.0 | −6.3 ± 2.8 | |||
SR17 | −169.0 | 81.0 | −1.7 ± 0.2 | −6.1 ± 0.7 | |||
SR16 | −169.0 | 80.0 | −11.4 ± 3.3 | −7.4 ± 2.1 | |||
M01 | −172.0 | 77.5 | −7.4 ± 0.5 | −18.8 ± 1.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Chen, L.; Zhan, L.; Zhang, J.; Li, Y.; Liu, J. Spatial Variability and Factors Influencing the Air-Sea N2O Flux in the Bering Sea, Chukchi Sea and Chukchi Abyssal Plain. Atmosphere 2017, 8, 65. https://doi.org/10.3390/atmos8040065
Wu M, Chen L, Zhan L, Zhang J, Li Y, Liu J. Spatial Variability and Factors Influencing the Air-Sea N2O Flux in the Bering Sea, Chukchi Sea and Chukchi Abyssal Plain. Atmosphere. 2017; 8(4):65. https://doi.org/10.3390/atmos8040065
Chicago/Turabian StyleWu, Man, Liqi Chen, Liyang Zhan, Jiexia Zhang, Yuhong Li, and Jian Liu. 2017. "Spatial Variability and Factors Influencing the Air-Sea N2O Flux in the Bering Sea, Chukchi Sea and Chukchi Abyssal Plain" Atmosphere 8, no. 4: 65. https://doi.org/10.3390/atmos8040065
APA StyleWu, M., Chen, L., Zhan, L., Zhang, J., Li, Y., & Liu, J. (2017). Spatial Variability and Factors Influencing the Air-Sea N2O Flux in the Bering Sea, Chukchi Sea and Chukchi Abyssal Plain. Atmosphere, 8(4), 65. https://doi.org/10.3390/atmos8040065