1. Introduction
In Smith [
1], a traveling-wave element is defined as follows: it is a thin wire of length
through which a current pulse travels with the speed of light in free space from one end to the other without attenuation. When the current pulse reaches the end of the wire, it is absorbed at the termination without reflection. The traveling-wave element, though with a reduced speed of current propagation, had been utilized by lightning researchers for some time as a vehicle to extract lightning current characteristics from the measured radiation fields [
2]. It had also been utilized to study the effect of the speed of propagation of the current pulse on the radiation fields. For example, when the speed of propagation of the current pulse is less than the speed of light, the electric field generated by the traveling-wave element consists of three terms, namely electrostatic, induction and radiation. As the speed of the current pulse approaches the speed of light, the three terms merge into each other, making the total electric field pure radiation [
3,
4]. Furthermore, the electric fields of the traveling-wave element reduce to dipole fields when the time variations of the current are much longer than the travel time of the current from one end to the other [
5]. Indeed, the traveling-wave element is a device that could be used to study features of electromagnetic radiation under different conditions.
In two recent publications, Cooray and Cooray [
6,
7] (referred to as Paper 1 and Paper 2 from here on) described the features of the radiation field generated by a traveling-wave element including the action and the momentum transported by this field. Another goal of the study was to investigate the features of radiation fields when the charge associated with the current pulse is reduced to its lower limit, namely the elementary charge. In Paper 1 it was shown that the condition
leads to the fact that
where
is the uncertainty in the radiated energy,
is the effective duration of the emission of radiation,
is the charge associated with the current pulse in the traveling-wave element,
is the Plank constant and
is the elementary charge. The mathematical condition given above is known in the literature as the time energy uncertainty principle. In Paper 2, by studying the momentum of the radiation, it was shown that the condition
is indeed satisfied by the emitted radiation. The results presented in Paper 1 were based purely on the numerical solution of cumbersome equations for the energy and action pertinent to the radiation fields. However, in Paper 2 these equations were reduced to simple analytical expressions that can be manipulated rather conveniently. The goal of this Letter is to utilize these simple expressions together with the ideas presented in Paper 1 to make a conclusion concerning the connection between the time energy uncertainty principle and the elementary charge.
This Letter is constructed as follows. First, the equations which were derived in Paper 1 and Paper 2 on the energy and action transported by the radiation fields are presented. Second, these equations are utilized to show how the action associated with radiation fields varies as a function of the charge associated with the current and its possible limits. Third, the expression for the action is combined with the theory outlined in Paper 2 to derive an expression for the minimum charge that could be detected by the electromagnetic radiation fields. This section is followed by a discussion and conclusions.
3. Physical Interpretation and Discussion
In Paper 2 it was shown that the electromagnetic fields generated by the traveling-wave element satisfy the inequality
In the above equation,
is the uncertainty associated with the energy measurement. The next question is: what is the uncertainty in the energy measurement? We follow the argument introduced in Paper 1 as follows. The parameter that can introduce uncertainty into the energy measurement is the uncertainty in the charge associated with the current. Assume that the charge comes in elementary units of, say,
. When the charge associated with the current pulse approaches this limit, the uncertainty in the measurement of energy becomes comparable to the energy itself. Thus, the minimum uncertainty associated with the energy measurement is given by
Since the minimum possible uncertainty for a given value of
is given by Equation (17), one can safely write Equation (16) as
Substituting for
from Equation (5), we obtain
From this, an expression for the minimum detectable charge can be obtained and it is given by
One can see from this expression that the minimum detectable charge
depends on the value of
and it decreases with increasing
. Since the upper bound of this parameter is equal to
, we can write
Thus, the smallest detectable charge associated with the current in the traveling-wave element is given by
If we substitute
= 4.4 × 10
26 m,
= 5.3 × 10
−11 m and
, we obtain
This shows that the smallest detectable charge is almost equal to the elementary charge. Note that the conditions used to derive this value are ideal but not practical. Under conditions related to practical lengths and practical radii of conductors, the minimum detectable charge is much larger than the elementary charge.
It is important to mention here that, due to the difference in the definition of , the charge estimated in Paper 1 differs from the above by a factor of . However, even with this difference, the estimated minimum charge is still on the order of the elementary charge. Another important point pertinent to the analysis presented in this paper is the following. As mentioned previously, the equations for the radiation fields used here are valid when the effective wavelength of the radiation is much greater than the radius of the conductor. Of course, one can derive equations for the radiation fields which are valid when the effective wavelength is less than the radius of the conductor. However, due to phase differences at the point of observation associated with the radiation emanating from different locations on the cross-section of the wire, the net energy emitted for a given charge would be less in this case than when the wavelength is much larger than the cross-section of the wire where the radiation fields coming from different locations on the cross-section of the wire are in phase at the point of observation. Thus, the case studied here is the one that gives rise to the largest energy (and the largest action) and the smallest detectable charge.
In the calculations presented in this paper we have considered ideal conditions by assuming that the radiating system can be represented by a traveling-wave element. In reality, the current will attenuate and disperse as it travels along a conductor and the radiation resistance and other dissipation losses will make the speed of propagation less than the speed of light [
1]. As mentioned in Paper 1, these effects will reduce the energy dissipation for a given current signature and the effect of this is to decrease the magnitude of the radiated energy and hence to increase the value of the minimum charge estimated. Thus, the minimum charge estimated in this paper can be considered as the absolute minimum that can be obtained under either ideal or real conditions.
Another point that one has to discuss concerning the analysis presented in this paper is the following: Since we are considering atomic dimensions and electromagnetic waves with comparable wavelengths, the question arises as to the possible modification of the results due to quantum effects. Observe that the minimum wavelength that is being considered in the paper is in the range of X-rays. As far as the radiation from accelerating charges is concerned, the relativistic Larmor formula, which is derived from classical electromagnetic theory [
1], predicts correctly the radiation produced by acceleration charges (synchrotron radiation) in the X-ray region. Thus, there is no reason to doubt the validity of Maxwell’s equations and their solutions pertinent to accelerating charges at these frequencies. Having said that, even if we have decreased the wavelength to the upper limit of radio frequencies (i.e., 3000 GHz) in Equation (22) (i.e., replace
with the wavelength corresponding to 3000 GHz), the minimum charge that we will obtain will still be on the order of the elementary charge i.e.,
. Actually, the main problem is that when we reduce the charge associated with the current pulse to the elementary charge, we will not be able to neglect the grainy nature (or quantum nature) of the electromagnetic radiation. This is the case because at high frequencies, the radiation may consist of only a few photons and the actual structure of the energy dissipation may not adhere to the smooth energy distribution predicted by the classical electrodynamics. In this situation, a single experiment may not produce either the correct energy or the energy distribution in space as predicted by Maxwell’s equations. In this case, the results obtained here have to be interpreted as resulting from the average of a large number of identical experiments conducted with identical traveling-wave elements. This indeed is the correspondence principle of Bohr [
9]. As the number of experiments approaches infinity, the average of the results reduces to the predictions based on classical equations. A somewhat similar situation exists in the double slit experiment. If the experiment is conducted with a single photon, one will find only a dot on the interference screen. However, if the same identical experiment is repeated
n times with identical photons, the interference pattern predicted by the classical electrodynamics appears on the screen as
n becomes very large.
The calculations presented in this paper were conducted for a Gaussian current pulse, which is a symmetrical function. Analysis done with other monopolar transient current signatures such as exponential and rectangular shapes shows that the Gaussian predicts the smallest charge provided that the same relative spectral amplitude is used to define for other current wave-shapes. This information when combined together with the results presented in this paper leads to the following generalization. In nature there exists different types of radiators that launch electromagnetic radiation into space. However, for a given current signature and a radiator length, the traveling-wave element is the one that generates the maximum action and hence it is associated with the smallest detectable charge. Based on this one can conclude that the smallest detectable charge associated with any electromagnetic radiating system in nature is on the order of the elementary charge or larger.
It is interesting to observe that a strict interpretation of Equation (22) shows that the elementary charge may decrease as the size of the universe increases. The question of whether the fundamental constants of nature change as the universe ages was raised by Dirac [
10] in a paper where, based on the ratios of atomic and cosmological parameters expressed in natural atomic units, he suggested that some of the universal constants must be regarded as parameters which vary with the size or the age of the universe. While objecting to some of the suggestions made by Dirac, Teller [
11] made the suggestion that the fine structure constant
, which is given by
, is related to the logarithm of the age of the universe when this age is expressed in natural time units. The fine structure constant is the parameter that defines the strength of the electromagnetic force. Let us consider the equations we have derived in this paper. Observe that the Bohr radius is the atomic unit of distance and the quantity
in Equation (22) is the radius of the universe expressed in natural units. The fine structure constant as predicted by Equation (22) is given by
In the above equation,
is the fine structure constant as predicted by Equation (22) and
is the radius of the universe expressed in natural units (i.e.,
). Equation (24) shows that the fine structure constant varies as the inverse of the logarithm of the radius of the universe. Since the size of the universe is increasing with the age of the universe, Equation (24) is in agreement with the suggestion made by Teller [
11]. If we substitute the current value of the radius of the universe into the above equation, we obtain
The value obtained above is close (within 1%) to the experimentally established value. Note that the results obtained in this paper would not change significantly even if we had assumed that Even though the results obtained here are interesting, it is important to point out that the discussion on whether the fundamental constants of nature can change with the age of the universe is still going on in the current literature and no conclusions on this topic can be made at the present time. On the other hand, recall that the time energy uncertainty principle will give only an order of magnitude estimation of the smallest detectable charge. Since the size of the universe appears inside the logarithmic term, it has to change by many orders of magnitude to make a change in the order of magnitude of the smallest detectable charge. Finally, it is important to stress that the calculations presented in this paper are based purely on classical electrodynamics and these results motivate a thorough analysis of the same problem using quantum electrodynamics.