Possible Causes for Spatial and Temporal Variation of Warm Season Precipitation in Xinjiang from 1960–2014
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
3. Results and Discussion
3.1. Spatial and Temporal Variations for Classified Summer Rain Amounts
3.2. Spatial and Temporal Variation for Classified Summer Rain Days
3.3. The Contribution of Light, Moderate, and Heavy Rain to Changes in Total Rain
3.4. The Relationships of Lower-Tropospheric Specific Humidity and Temperature to Light Rain Days
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jones, P.; Trenberth, K.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein, T.; Parker, D.; Renwick, J.; Rusticucci, M.; Soden, B. Observations: Surface and atmospheric climate change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007; pp. 235–336. [Google Scholar]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1217. [Google Scholar] [CrossRef]
- Wentz, F.J.; Ricciardulli, L.; Hilburn, K.; Mears, C. How much more rain will global warming bring? Science 2007, 317, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ding, Q.H. Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett. 2006. [Google Scholar] [CrossRef]
- Han, X.; Yang, Q.; Yao, J. Spatiotemporal distribution characteristics of precipitation in Tianshan Mountain of Xinjiang during the last 51 years. Res.Soil Water Conserv. 2013, 20, 139–144. [Google Scholar]
- Li, B.F.; Chen, Y.N.; Chen, Z.S.; Xiong, H.G.; Lian, L.S. Why does precipitation in Northwest China show a significant increasing trend from 1960 to 2010? Atmos. Res. 2016, 167, 275–284. [Google Scholar] [CrossRef]
- Tan, X.Z.; Shao, D.G. Precipitation trends and teleconnections identified using quantile regressions over Xinjiang, China. Int. J. Climatol. 2016. [Google Scholar] [CrossRef]
- Xu, J.H.; Chen, Y.N.; Li, W.H.; Liu, Z.H.; Tang, J.; Wei, C.M. Understanding temporal and spatial complexity of precipitation distribution in Xinjiang, China. Theor. Appl. Climatol. 2015, 123, 1–13. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.F.; Singh, V.P.; Xu, C.Y.; Bai, Y.G. Changing structure of the precipitation process during 1960–2005 in Xinjiang, China. Theor Appl. Climatol. 2012, 110, 229–244. [Google Scholar] [CrossRef]
- Liang, K.; Liu, S.; Bai, P.; Nie, R. The yellow river basin becomes wetter or drier? The case as indicated by mean precipitation and extremes during 1961–2012. Theor. Appl. Climatol. 2015, 119, 701–722. [Google Scholar] [CrossRef]
- Ren, Z.G.; Zhang, M.J.; Wang, S.J.; Qiang, F.; Zhu, X.F.; Dong, L. Changes in daily extreme precipitation events in South China from 1961 to 2011. J. Geogr. Sci. 2015, 25, 58–68. [Google Scholar] [CrossRef]
- Jiang, F.Q.; Hu, R.J.; Wang, S.P.; Zhang, Y.W.; Tong, L. Trends of precipitation extremes during 1960–2008 in xinjiang, the Northwest China. Theor. Appl. Climatol. 2012, 111, 133–148. [Google Scholar] [CrossRef]
- Wang, B.L.; Zhang, M.J.; Wei, J.L.; Wang, S.J.; Li, S.S.; Ma, Q.; Li, X.F.; Pan, S.K. Changes in extreme events of temperature and precipitation over Xinjiang, Northwest China, during 1960–2009. Quat. Int. 2013, 298, 141–151. [Google Scholar] [CrossRef]
- Zhang, Q.; Singh, V.P.; Li, J.; Jiang, F.; Bai, Y. Spatio-temporal variations of precipitation extremes in Xinjiang, China. J. Hydrol. 2012, 434, 7–18. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Wei, W.S.; Jiang, F.Q.; Liu, M.Z.; Wang, W.W. Trends of extreme precipitation events over Xinjiang during 1961–2008. J. Mt. Sci. 2012, 30, 417–424. [Google Scholar]
- Zhang, Y.W.; Jiang, F.Q.; Wei, W.S.; Wang, W.W.; Liu, M.Z.; Han, X.; Hong, W.; Lu, H. Probability distribution of precipitation extremes over Xinjiang during 1961–2004. J. Desert Res. 2012, 32, 503–508. [Google Scholar]
- Allan, R.; Soden, B. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Coumou, D.; Frieler, K. Increased record-breaking precipitation events under global warming. Clim. Chang. 2015, 132, 501–515. [Google Scholar] [CrossRef]
- Wasko, C.; Sharma, A. Quantile regression for investigating scaling of extreme precipitation with temperature. Water Resour. Res. 2014, 50, 3608–3614. [Google Scholar] [CrossRef]
- Goswami, B.N.; Venugopal, V.; Sengupta, D.; Madhusoodanan, M.S.; Xavier, P.K. Increasing trend of extreme rain events over India in a warming environment. Science 2006, 314, 1442–1445. [Google Scholar] [CrossRef] [PubMed]
- Rahmstorf, S.; Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 2011, 108, 17905–17909. [Google Scholar] [CrossRef] [PubMed]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Tank, A.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006. [Google Scholar] [CrossRef]
- Tank, A.; Konnen, G.P. Trends in indices of daily temperature and precipitation extremes in Europe, 1946–1999. J. Clim. 2003, 16, 3665–3680. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.B.; Hegerl, G.C. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 2007, 20, 1419–1444. [Google Scholar] [CrossRef]
- Jones, R.H.; Westra, S.; Sharma, A. Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett. 2010, 37, 22805–22810. [Google Scholar]
- Wasko, C.; Sharma, A. Steeper temporal distribution of rain intensity at higher temperatures within Australian Storms. Nat. Geosci. 2015, 8, 527–529. [Google Scholar] [CrossRef]
- Pall, P.; Allen, M.R.; Stone, D.A. Testing the clausius-clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim. Dyn. 2007, 28, 351–363. [Google Scholar] [CrossRef]
- Qian, W.H.; Fu, J.K.; Yan, Z.W. Decrease of light rain events in summer associated with a warming environment in China during 1961–2005. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- Fu, J.; Qian, W.; Lin, X.; Chen, D. Trends in graded precipitation in china from 1961 to 2000. Adv. Atmos. Sci. 2008, 25, 267–278. [Google Scholar] [CrossRef]
- Yun, Q.; Gong, D.; Fan, J.; Ruby, L.L.; Ralf, B.; Chen, D.; Wang, W. Heavy pollution suppresses light rain in china: Observations and modeling. J. Geophys. Res. 2009, 114, 4427–4433. [Google Scholar]
- Liu, B.; Xu, M.; Henderson, M. Where have all the showers gone? Regional declines in light precipitation events in China, 1960–2000. Int. J. Climatol. 2011, 31, 1177–1191. [Google Scholar] [CrossRef]
- Huang, G.; Wen, G. Spatial and temporal variations of light rain events over china and the mid-high latitudes of the Northern Hemisphere. Chin. Sci. Bull. 2013, 58, 1402–1411. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, L.; Zhao, D.; Tang, J. Impacts of warming and water vapor content on the decrease in light rain days during the warm season over Eastern China. Clim. Dyn. 2014, 45, 1841–1857. [Google Scholar] [CrossRef]
- Liu, R.; Liu, S.C.; Cicerone, R.J.; Shiu, C.J.; Li, J.; Wang, J.L.; Zhang, Y.H. Trends of extreme precipitation in eastern china and their possible causes. Adv. Atmos. Sci. 2015, 32, 1027–1037. [Google Scholar] [CrossRef]
- Zhai, P.M.; Zhang, X.B.; Wan, H.; Pan, X.H. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The era-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Berrisford, P.; Dee, D.P.; Fielding, K.; Fuentes, M.; Kållberg, P.W.; Kobayashi, S.; Uppala, S.M. The ERA-Interim Archive; European Centre for Medium-Range Weather Forecasts: Shinfield, UK, 2009. [Google Scholar]
- Su, T.; Feng, G.L. The characteristics of the summer atmospheric water cycle over china and comparison of ERA-Interim and merra reanalysis. Acta Phys. Sin. 2014, 63, 249201. [Google Scholar]
- Zhou, J.; Wu, Y.P.; Feng, G.L.; Hu, J.G. Spatial and temporal characteristics of moisture cycle factors over china analyzed with Era-Interim reanalysis data. Acta Phys. Sin. 2013, 62, 199202. [Google Scholar]
- Song, S.K.; Li, L.H.; Chen, X.; Bai, J. The dominant role of heavy precipitation in precipitation change despite opposite trends in west and east of Northern China. Int. J. Clim. 2015, 35, 4329–4336. [Google Scholar] [CrossRef]
- Nimon, K.F.; Oswald, F.L. Understanding the results of multiple linear regression beyond standardized regression coefficients. Organ. Res. Method. 2013, 16, 650–674. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.W. A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivar. Behav. Res. 2000, 35, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Hong, S.U.; Wei, W.; Han, P. Changes in air temperature and evaporation in Xinjiang during recent 50 years. J. Glaciol. Geocryol. 2003, 25, 174–178. [Google Scholar]
Type | Region | Total Rain | Light Rain | Moderate Rain | Heavy Rain | ||||
---|---|---|---|---|---|---|---|---|---|
Slope | p | Slope | p | Slope | p | Slope | p | ||
Amount | Xinjiang | 0.47 | *** | 0.08 | * | 0.13 | ** | 0.26 | *** |
Northern Xinjiang | 0.45 | * | −0.007 | NS | 0.11 | * | 0.35 | *** | |
Southern Xinjiang | 0.48 | *** | 0.14 | *** | 0.15 | ** | 0.19 | ** | |
Day | Xinjiang | 0.05 | NS | 0.014 | NS | 0.02 | ** | 0.016 | *** |
Northern Xinjiang | −0.02 | NS | −0.05 | * | 0.012 | NS | 0.019 | *** | |
Southern Xinjiang | 0.11 | *** | 0.08 | *** | 0.021 | ** | 0.01 | *** |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Ding, J.; Zong, Z.; Yang, A.; Luo, G. Possible Causes for Spatial and Temporal Variation of Warm Season Precipitation in Xinjiang from 1960–2014. Atmosphere 2017, 8, 20. https://doi.org/10.3390/atmos8010020
Song S, Ding J, Zong Z, Yang A, Luo G. Possible Causes for Spatial and Temporal Variation of Warm Season Precipitation in Xinjiang from 1960–2014. Atmosphere. 2017; 8(1):20. https://doi.org/10.3390/atmos8010020
Chicago/Turabian StyleSong, Shikai, Jianli Ding, Zhaolei Zong, Aixia Yang, and Geping Luo. 2017. "Possible Causes for Spatial and Temporal Variation of Warm Season Precipitation in Xinjiang from 1960–2014" Atmosphere 8, no. 1: 20. https://doi.org/10.3390/atmos8010020
APA StyleSong, S., Ding, J., Zong, Z., Yang, A., & Luo, G. (2017). Possible Causes for Spatial and Temporal Variation of Warm Season Precipitation in Xinjiang from 1960–2014. Atmosphere, 8(1), 20. https://doi.org/10.3390/atmos8010020