Indoor Air Quality in Naturally Ventilated Italian Classrooms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Instrumentation and Quality Assurance
- -
- A Diffusion Charger Particle Counter (Testo DiSCmini) to measure particle number concentration in the 10–700 nm size range, based on the electrical charging of the aerosols, with a time resolution of 1 s.
- -
- A DustTrak™ DRX Aerosol Monitors (Model 8534, TSI Incorporated, St. Paul, MN, USA) to measure different PM fractions (PM10, PM2.5, and PM1) operating on the base of a light scattering technique, where the amount of scattered light is proportional to the aerosol particle volume concentration. Data were obtained with a 1-min time resolution. The instrument was calibrated by comparison with the PM10 mass concentration measurement obtained using gravimetric time-integrated sampler (Zambelli 6000 Plus). Additionally, the instrument was calibrated daily to a zero filter, used to re-zero the units and ensure reading accuracy.
- -
- An Aethalometer (AE51, Magee Scientific) to detect black carbon (BC) concentration operating through light’s absorption (attenuation) of optically absorbing particles technique with a time resolution of 1 min.
- -
- A non-dispersive infrared analyzer (Testo—Ambient CO2 probe) to measure temperature, humidity, CO2 and pressure with 1-min time resolution.
- -
- An Alpha Guard Professional Radon Monitor (Genitron, Germany) to measure radon activity concentration through a 0.6 L ionization chamber where the radon gas enters by spontaneous diffusion. The instrument was calibrated through the INMRI ENEA Radon reference measurement system before the experimental campaign. Radon concentration was measured in “diffusion mode” with a 60-min sampling time.
2.3. Methodology Description
3. Results
3.1. School and Classroom Characteristics
School | Description | Location | Traffic Density and Peak Times (Vehicles·min−1) | Classroom | Floor Area (m2) | Volume (m3) | Study Period |
---|---|---|---|---|---|---|---|
S1 | Public school Built in 1980 One-story building V: 3960 m3 Enrollment: 111 Classrooms equipped with aluminum windows single-glazed | Low trafficked zone (traffic allowed only during peak times) | Not available | IS1 | 59 | 216 | 10 February and 15 May 2015 |
S2 | Public school Built in 1980 Two-story building V: 12,300 m3 Enrollment: 530 Classrooms equipped with aluminum windows single-glazed | Urban road (no heavy duty vehicles) * | 36 ± 2 44 ± 1; 08:30 a.m. 54 ± 2; 13:30 p.m. | IS2 | 41 | 151 | 16, 20, 21 January and 13,20,21 May 2015 |
IS3 | 45 | 165 | |||||
IS4 | 82 | 302 | |||||
S3 | Public school Built in1960/70 One-story building V:13,950 m3 Enrollment: 615 Classrooms equipped with aluminum windows single-glazed | Urban road (7.7% of heavy duty vehicles) ** | 37 ± 11 | IS5 | 47 | 151 | 11 February, 20 March and 28–29 May 2015 |
46 ± 10; 08:30 a.m. 55 ± 11; 13:30 p.m. | IS6 | 47 | 151 |
3.2. General Air Quality Characteristics
Schools | Nin (cm−3) | Nout (cm−3) |
---|---|---|
S1 | 8.94 ± 1.82 × 103 | 1.14 ± 0.27 × 104 |
S2 | 1.08 ± 0.36 × 104 | 1.25 ± 0.36 × 104 |
S3 | 1.48 ± 0.50 × 104 | 1.41 ± 0.94 × 104 |
Classroom (Storey Level) | Season | Nin (cm−3) | PM1 (µg·m−3) | PM2.5 (µg·m−3) | PM10 (µg·m−3) | BC (µg·m−3) | CO2 (ppm) | Nout (cm−3) | Ni/Nout |
---|---|---|---|---|---|---|---|---|---|
IS1 (ground floor) | W | 8.24 ± (1.81) × 103 | -- | -- | -- | -- | 1503 ± 405 | -- | -- |
S | 9.65 ± (1.79) × 103 | 11.6 ± 2.3 | 12.0 ± 2.3 | 19.4 ± 5.4 | -- | 501 ± 35 | 1.14 ± (0.27) × 104 | 0.85 | |
IS2 (first floor) | W | 1.29 ± (0.27) × 104 | -- | -- | - | -- | 3130 ± 1283 | 1.72 ± (0.46) × 104 | 0.75 |
S | 1.17 ± (0.41) × 104 | 15.4 ± 8.2 | 16.3 ± 8.7 | 30.1 ± 21.0 | 1.8 ± 0.6 | 900 ± 301 | 1.08 ± (0.26) × 104 | 1.08 | |
IS3 (first floor) | W | 9.17 ± (3.03) × 103 | -- | -- | -- | -- | 2746 ± 1235 | 1.03 ± (0.30) × 104 | 0.89 |
S | 6.00 ± (1.84) × 103 | 23.3 ± 14.8 | 24.7 ± 16.0 | 46.6 ± 43.2 | 1.4 ± 0.4 | 858 ± 169 | 6.57 ± (2.14) × 103 | 0.91 | |
IS4 (ground floor) | W | 1.38 ± (0.18) × 104 | -- | - | - | -- | 1907 ± 463 | 1.78 ± (0.25) × 104 | 0.77 |
S | 1.11 ± (0.26) × 104 | 16.5 ± 5.2 | 17.3 ± 5.5 | 30.7 ± 12.3 | -- | 858 ± 217 | -- | -- | |
IS5 (ground floor) | W | 1.60 ± (0.47) × 104 | -- | -- | -- | -- | 1747 ± 559 | 1.65 ± (1.04) × 104 | 0.98 |
S | 1.36 ± (0.33) × 104 | 19.3 ± 3.8 | 20.2 ± 3.9 | 36.7 ± 6.9 | 2.9 ± 1.5 | 1423 ± 308 | 1.17 ± (0.22) × 104 | 1.17 |
School | Classroom | Season | Tin (°C) | RHin (%) | Tout (°) | Rhout (%) |
---|---|---|---|---|---|---|
S1 | IS1 | W | 21.7 ± 1.6 | 45.2 ± 5.3 | 6.2 ± 1.2 | 80.0 ± 3.8 |
S | 27.1 ± 0.4 | 45.3 ± 1.5 | 18.4 ± 2.2 | 61.5 ± 5.9 | ||
S2 | IS2 | W | 20.7 ± 1.2 | 67.4 ± 3.4 | 9.2 ± 1.6 | 92.1 ± 6.4 |
S | 25.4 ± 0.6 | 52.5 ± 5.0 | 13.5 ± 1.8 | 85.8 ± 7.5 | ||
IS3 | W | 19.8 ± 1.1 | 67.7 ± 3.1 | 9.6 ± 0.5 | 91.2 ± 1.5 | |
S | 29.0 ± 1.5 | 47.8 ± 2.4 | 13.2 ± 1.4 | 86.6 ± 5.6 | ||
IS4 | W | 24.2 ± 2.2 | 40.1 ± 3.0 | 4.7 ± 2.7 | 94.4 ± 3.4 | |
S | 26.5 ± 0.7 | 49.2 ± 1.8 | 15.6 ± 1.7 | 85.5 ± 3.4 | ||
S3 | IS5 | W | 19.7 ± 1.5 | 46.5 ± 2.8 | 8.5 ± 1.2 | 80.0 ± 3.8 |
S | 24.0 ± 0.8 | 47.8 ± 2.6 | 16.5 ± 2.6 | 80.7 ± 9.1 | ||
IS6 | W | 23.3 ± 1.3 | 30.1 ± 2.1 | 13.0 ± 1.0 | 72.0 ± 3.8 | |
S | 23.5 ± 0.5 | 53.9 ± 7.5 | 15.8 ± 2.2 | 82.6 ± 6.4 |
3.3. Temporal Variation of Indoor Air Quality during School Hours
3.4. Indoor PM Concentrations within School Hours
3.5. BC Concentrations within School Hours
3.6. Characteristics of Radon Concentration
Classroom | Radon Concentrations (Bq·m−3) | |||
---|---|---|---|---|
Story Level | Season | Weekdays (School Hours) | Weekdays (24 h) | |
IS1 | Ground floor | W | 174 ± 63 | 156 ± 58 |
S | 41 ± 48 | 115 ± 128 | ||
IS5 | Ground floor | W | 29 ± 9 | 25 ± 9 |
S | ||||
IS6 | Ground floor | W | 21 ± 12 | 28 ± 9 |
S | 24 ± 12 | 28 ± 16 |
4. Discussion
5. Conclusions
- -
- The concentrations of indoor particle number within school hours were mainly influenced by the concentrations of outdoor particle number. This was attributed to two aspects:
- The proximity of schools to trafficked roads: the averaged indoor and outdoor particle concentrations were higher at school that was placed near the highest traffic conditions. Highest indoor BC values were also detected during the first class of school day coinciding with morning traffic peak hour. This result underlined the impact of urban planning decisions on children’s exposure to particles from traffic emissions.
- The effect of airing: differences in terms of Ni/Nout ratios were found between the cold and warm season, this indicated the influence of penetration of outdoor particles. Ratio value of 0.85 ± 0.10 was found in winter under short opening window periods and low opening frequency; this was comparable with penetration ratios (0.6–0.9), based on infiltrating airflows through leakage reported in previous studies. While in spring, the Ni/Nout ratio was 1.00 ± 0.15, under longer opening window periods and low opening frequency, and this was related to a higher degree of penetration of outdoor particles.
- -
- Higher level of CO2 was recorded in classrooms in winter than in spring. However, the airing that was performed by the occupants, was not effective neither in winter nor in spring at maintaining good air quality (CO2 < 1000 ppm) in classrooms at all time during a full school day.
- -
- Children movement and recreational activities led to re-suspension of mainly indoor coarse particles and greatly contributed to the increase of PM10 in classrooms especially during break time. Large particles indeed appeared to play a greater role in PM exposure in classrooms than the finer fraction. PM2.5 was also found to be very close to PM1, indicating PM1 was a better indicator for traffic emission in school classrooms.
- -
- A greater reduction of radon concentrations (81%) was found, within school hours in spring. This was associated with longer opening window period rather than the short window opening periods in winter.
Acknowledgment
Author Contributions
References
- Buonanno, G.; Giovinco, G.; Morawska, L.; Stabile, L. Tracheobronchial and alveolar dose of submicrometer particles for different population age groups in Italy. Atmos. Environ. 2011, 45, 6216–6224. [Google Scholar] [CrossRef] [Green Version]
- Kotzias, D.; Geiss, O.; Tirendi, S.; Josefa, B.M.; Reina, V.; Gotti, A.; Graziella, C.R.; Casati, B.; Marafante, E.; Sarigiannis, D. Exposure to multiple air contaminants in public buildings, schools and kindergartens-the european indoor air monitoring and exposure assessment (airmex) study. Fresenius Environ. Bull. 2009, 18, 670–681. [Google Scholar]
- Mendell, M.J.; Heath, G.A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 2005, 15, 27–52. [Google Scholar] [CrossRef] [PubMed]
- Boldo, E.; Medina, S.; LeTertre, A.; Hurley, F.; Mücke, hG.; Ballester, F.; Aguilera, I.; Eilstein, D. Apheis: Health impact assessment of long-term exposure to PM2.5 in 23 European cities. Eur. J. Epidemiol. 2006, 21, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Pope Iii, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Jerrett, M.; Burnett, R.T.; Ma, R.; Arden Pope Iii, C.; Krewski, D.; Newbold, K.B.; Thurston, G.; Shi, Y.; Finkelstein, N.; Calle, E.E.; et al. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 2005, 16, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Krewski, D.; Jerrett, M.; Burnett, R.T.; Ma, R.; Hughes, E.; Shi, Y. Extended follow-up and spatial analysis of the american cancer society study linking particulate air pollution and mortality. Available online: http://scientificintegrityinstitute.net/Krewski052108.pdf (accessed on 22 September 2015).
- Lepeule, J.; Laden, F.; Dockery, D.; Schwartz, J. Chronic exposure to fine particles and mortality: An extended follow-up of the harvard six cities study from 1974 to 2009. Environ. Health Perspect. 2012, 120, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Pope Iii, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Jaques, P.A.; Kim, C.S. Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal. Toxicol. 2000, 12, 715–731. [Google Scholar] [PubMed]
- Anderson, H.R.; Bremner, S.A.; Atkinson, R.W.; Harrison, R.M.; Walters, S. Particulate matter and daily mortality and hospital admissions in the west midlands conurbation of the United Kingdom: Associations with fine and coarse particles, black smoke and sulphate. Occupat. Environ. Med. 2001, 58, 504–510. [Google Scholar] [CrossRef]
- Janhäll, S.; Molnar, P.; Hallquist, M. Traffic emission factors of ultrafine particles: Effects from ambient air. J. Environ. Monit. 2012, 14, 2488–2496. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Cho, W.S.; Choi, M.; Kim, S.J.; Han, B.S.; Kim, S.H.; Kim, H.O.; Sheen, Y.Y.; Jeong, J. The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol. Lett. 2009, 189, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Unfried, K.; Albrecht, C.; Klotz, L.O.; Von Mikecz, A.; Grether-Beck, S.; Schins, R.P.F. Cellular responses to nanoparticles: Target structures and mechanisms. Nanotoxicology 2007, 1, 52–71. [Google Scholar] [CrossRef]
- Cesaroni, G.; Badaloni, C.; Gariazzo, C.; Stafoggia, M.; Sozzi, R.; Davoli, M.; Forastiere, F. Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environ. Health Perspect. 2013, 121, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Stölzel, M.; Breitner, S.; Cyrys, J.; Pitz, M.; Wölke, G.; Kreyling, W.; Heinrich, J.; Wichmann, H.E.; Peters, A. Daily mortality and particulate matter in different size classes in Erfurt, Germany. J. Exposure Sci. Environ. Epidemiol. 2007, 17, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.W.; Anderson, H.R.; Sunyer, J.; Ayres, J.; Baccini, M.; Vonk, J.M.; Boumghar, A.; Forastiere, F.; Forsberg, B.; Touloumi, G.; et al. Acute effects of particulate air pollution on respiratory admissions: Results from aphea 2 project. Am. J. Respir. Crit. Care Med. 2001, 164, 1860–1866. [Google Scholar] [CrossRef] [PubMed]
- Frampton, M.W. Systemic and cardiovascular effects of airway injury and inflammation: Ultrafine particle exposure in humans. Environ. Health Perspect. 2001, 109, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G.; Celein, R.M.; Ferin, J.; Weiss, B. Association of particulate air pollution and acute mortality: Involvement of ultrafine particles? Inhal. Toxicol. 1995, 7, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Stone, V.; Brown, D.M.; Watt, N.; Wilson, M.; Donaldson, K.; Ritchie, H.; MacNee, W. Ultrafine particle-mediated activation of macrophages: Intracellular calcium signaling and oxidative stress. Inhal. Toxicol. 2000, 12, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Timblin, C.R.; Shukla, A.; Berlanger, I.; BeruBe, K.A.; Churg, A.; Mossman, B.T. Ultrafine airborne particles cause increases in protooncogene expression and proliferation in alveolar epithelial cells. Toxicol. Appl. Pharmacol. 2002, 179, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Kulmala, M.; Vehkamäki, H.; Petäjä, T.; Dal Maso, M.; Lauri, A.; Kerminen, V.M.; Birmili, W.; McMurry, P.H. Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci. 2004, 35, 143–176. [Google Scholar] [CrossRef]
- Morawska, L.; Ristovski, Z.; Jayaratne, E.R.; Keogh, D.U.; Ling, X. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ. 2008, 42, 8113–8138. [Google Scholar] [CrossRef] [Green Version]
- Buonanno, G.; Dell’Isola, M.; Stabile, L.; Viola, A. Uncertainty budget of the SMPS-APS system in the measurement of PM1, PM2.5, and PM10. Aerosol Sci. Technol. 2009, 43, 1130–1141. [Google Scholar] [CrossRef] [Green Version]
- Sundell, J. On the history of indoor air quality and health. Indoor Air Suppl. 2004, 14, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Sundell, J.; Bischof, W.; Bohgard, M.; Cherrie, J.W.; Clausen, P.A.; Dreborg, S.; Kildesø, J.; Kjærgaard, S.K.; Løvik, M.; et al. “Europart”. Airborne particles in the indoor environment. A European interdisciplinary review of scientific evidence on associations between exposure to particles in buildings and health effects. Indoor Air 2003, 13, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Godwin, C.; Batterman, S. Indoor air quality in michigan schools. Indoor Air 2007, 17, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.M.; Kirby, R. Indoor air quality in U.K. School classrooms ventilated by natural ventilation windcatchers. Int. J. Vent. 2012, 10, 323–338. [Google Scholar]
- Jurado, S.R.; Bankoff, A.D.P.; Sanchez, A. Indoor air quality in brazilian universities. Int. J. Environ. Res. Public Health 2014, 11, 7081–7093. [Google Scholar] [CrossRef] [PubMed]
- Colgan, P.A.; Madden, J.S.; Synnott, H.; Fennell, S.; Pollard, D.; Fenton, D. Current status of programmes to measure and reduce radon exposure in irish workplaces. J. Radiol. Prot. 2004, 24, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Ennemoser, O.; Schneider, P.; Ambach, W.; Brunner, P. Increased radon concentrations in classrooms used for pottery workshops. Sci. Total Environ. 1992, 116, 291–295. [Google Scholar] [CrossRef]
- Blondeau, P.; Iordache, V.; Poupard, O.; Genin, D.; Allard, F. Relationship between outdoor and indoor air quality in eight French schools. Indoor Air 2005, 15, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Diapouli, E.; Chaloulakou, A.; Spyrellis, N. Indoor and outdoor particulate matter concentrations at schools in the Athens area. Indoor Built Environ. 2007, 16, 55–61. [Google Scholar] [CrossRef]
- Fromme, H.; Diemer, J.; Dietrich, S.; Cyrys, J.; Heinrich, J.; Lang, W.; Kiranoglu, M.; Twardella, D. Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmos. Environ. 2008, 42, 6597–6605. [Google Scholar] [CrossRef]
- Heudorf, U.; Neitzert, V.; Spark, J. Particulate matter and carbon dioxide in classrooms - the impact of cleaning and ventilation. Int. J. Hyg. Environ. Health 2009, 212, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Janssen, N.A.H.; Hoek, G.; Harssema, H.; Brunekreef, B. Childhood exposure to pm10: Relation between personal, classroom, and outdoor concentrations. Occup. Environ. Med. 1997, 54, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Tippayawong, N.; Khuntong, P.; Nitatwichit, C.; Khunatorn, Y.; Tantakitti, C. Indoor/outdoor relationships of size-resolved particle concentrations in naturally ventilated school environments. Build. Environ. 2009, 44, 188–197. [Google Scholar] [CrossRef]
- Buonanno, G.; Fuoco, F.C.; Morawska, L.; Stabile, L. Airborne particle concentrations at schools measured at different spatial scales. Atmos. Environ. 2013, 67, 38–45. [Google Scholar] [CrossRef]
- Morawska, L.; He, C.; Johnson, G.; Guo, H.; Uhde, E.; Ayoko, G. Ultrafine particles in indoor air of a school: Possible role of secondary organic aerosols. Environ. Sci. Technol. 2009, 43, 9103–9109. [Google Scholar] [CrossRef] [PubMed]
- Reche, C.; Viana, M.; Rivas, I.; Bouso, L.; Àlvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; Querol, X. Outdoor and indoor UFP in primary schools across Barcelona. Sci. Total Environ. 2014, 493, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhu, Y. Characterizing ultrafine particles and other air pollutants at five schools in South Texas. Indoor Air 2012, 22, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Shrubsole, C.; Jones, B.; Hamilton, I.; Chalabi, Z.; Davies, M.; Mavrogianni, A.; Taylor, J. Using probabilistic sampling-based sensitivity analyses for indoor air quality modelling. Build. Environ. 2014, 78, 171–182. [Google Scholar] [CrossRef]
- Zhu, Y.; Hinds, W.C.; Krudysz, M.; Kuhn, T.; Froines, J.; Sioutas, C. Penetration of freeway ultrafine particles into indoor environments. J. Aerosol Sci. 2005, 36, 303–322. [Google Scholar] [CrossRef]
- Chao, C.Y.H.; Tung, T.C. An empirical model for outdoor contaminant transmission into residential buildings and experimental verification. Atmos. Environ. 2001, 35, 1585–1596. [Google Scholar] [CrossRef]
- Guo, H.; Morawska, L.; He, C.; Gilbert, D. Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an air-conditioned classroom. Atmos. Environ. 2008, 42, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Baker, P.H.; Sharples, S.; Ward, I.C. Air flow through cracks. Build. Environ. 1987, 22, 293–304. [Google Scholar] [CrossRef]
- Ho, K.F.; Cao, J.J.; Harrison, R.M.; Lee, S.C.; Bau, K.K. Indoor/outdoor relationships of organic carbon (OC) and elemental carbon (EC) in PM2.5 in roadside environment of Hong Kong. Atmos. Environ. 2004, 38, 6327–6335. [Google Scholar] [CrossRef]
- Poupard, O.; Blondeau, P.; Iordache, V.; Allard, F. Statistical analysis of parameters influencing the relationship between outdoor and indoor air quality in schools. Atmos. Environ. 2005, 39, 2071–2080. [Google Scholar] [CrossRef]
- Gupta, A.; David Cheong, K.W. Physical characterization of particulate matter and ambient meteorological parameters at different indoor-outdoor locations in singapore. Build. Environ. 2007, 42, 237–245. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/o ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Liu, D.L.; Nazaroff, W.W. Particle penetration through building cracks. Aerosol Sci. Technol. 2003, 37, 565–573. [Google Scholar] [CrossRef]
- WHO Guidelines for Indoor Air Quality: Selected Pollutants. Available online: http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf (accessed on 22 September 2015).
- Selgrade, M.K.; Plopper, C.G.; Gilmour, M.I.; Conolly, R.B.; Foos, B.S.P. Assessing the health effects and risks associated with children’s inhalation exposures - asthma and allergy. J. Toxicol. Environ. Health - Part A: Curr. Issues 2008, 71, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, M.; Clifford, S.; Jayaratne, R.; Megat Mokhtar, M.A.; Fuoco, F.; Buonanno, G.; Morawska, L. School children’s personal exposure to ultrafine particles in the urban environment. Environ. Sci. Technol. 2014, 48, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Review of Curriculum and Assessment Framework Internet Archive (INCA). Available online: http://www.nfer.ac.uk/what-we-do/information-and-reviews/inca/INCAcomparativetablesMarch2012.pdf (accessed on 22 September 2015).
- UNI EN 12792: 2005. Ventilation for Buildings—Symbols, Terminology and Graphical Symbols. Available online: http://infostore.saiglobal.com/store/details.aspx?ProductID=657286 (accessed on 22 September 2015).
- Buonanno, G.; Jayaratne, R.E.; Morawska, L.; Stabile, L. Metrological performances of a diffusion charger particle counter for personal monitoring. Aerosol Air Qual. Res. 2014, 14, 156–167. [Google Scholar] [CrossRef]
- Stabile, L.; Trassierra, C.V.; Dell’Agli, G.; Buonanno, G. Ultrafine particle generation through atomization technique: The influence of the solution. Aerosol Air Qual. Res. 2013, 13, 1667–1677. [Google Scholar] [CrossRef]
- Buonanno, G.; Fuoco, F.C.; Stabile, L. Influential parameters on particle exposure of pedestrians in urban microenvironments. Atmos. Environ. 2011, 45, 1434–1443. [Google Scholar] [CrossRef]
- Amato, F.; Rivas, I.; Viana, M.; Moreno, T.; Bouso, L.; Reche, C.; Àlvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; Querol, X. Sources of indoor and outdoor PM2.5 concentrations in primary schools. Sci. Total Environ. 2014, 490, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Viana, M.; Rivas, I.; Querol, X.; Alastuey, A.; Sunyer, J.; Álvarez-Pedrerol, M.; Bouso, L.; Sioutas, C. Indoor/outdoor relationships and mass closure of quasi-ultrafine, accumulation and coarse particles in Barcelona schools. Atmos. Chem. Phys. 2014, 14, 4459–4472. [Google Scholar] [CrossRef]
- Fromme, H.; Twardella, D.; Dietrich, S.; Heitmann, D.; Schierl, R.; Liebl, B.; Rüden, H. Particulate matter in the indoor air of classrooms-exploratory results from Munich and surrounding area. Atmos. Environ. 2007, 41, 854–866. [Google Scholar] [CrossRef]
- Morawska, L.; Afshari, A.; Bae, G.N.; Buonanno, G.; Chao, C.Y.H.; Hänninen, O.; Hofmann, W.; Isaxon, C.; Jayaratne, E.R.; Pasanen, P.; et al. Indoor aerosols: From personal exposure to risk assessment. Indoor Air 2013, 23, 462–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.C.; Cheng, Y.; Ho, K.F.; Cao, J.J.; Louie, P.K.K.; Chow, J.C.; Watson, J.G. Pm1.0 and pm2.5 characteristics in the roadside environment of Hong Kong. Aerosol Sci. Technol. 2006, 40, 157–165. [Google Scholar] [CrossRef]
- ASHRAE Standard 62.1-2007: Ventilation for Acceptable Indoor Air Quality. Available online: http://www.mintie.com/assets/pdf/education/ASHRAE%2062.1-2007.pdf (accessed on 22 September 2015).
- Ventilation for Non-Residential Buildings—Performance Requirements for Ventilation and Room-Conditioning Systems. Available online: http://www.cres.gr/greenbuilding/PDF/prend/set4/WI_25_Pre-FV_version_prEN_13779_Ventilation_for_non-resitential_buildings.pdf (accessed on 22 September 2015).
- UNI TS 111300—Technical Standards Reference on Savings and Energy Certification of Buildings. Available online: http://www.expoclima.net/en/focus/regulations/uni_ts_11300_technical_standards_reference_on_savings_and_energy_certification_of_buildings.htm (accessed on 22 September 2015).
- ASHRAE. ASHRAE Handbook-Fundamentals; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 1997. [Google Scholar]
- Braniš, M.; Šafránek, J. Characterization of coarse particulate matter in school gyms. Environ. Res. 2011, 111, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Buonanno, G.; Fuoco, F.C.; Marini, S.; Stabile, L. Particle re-suspension in school gyms during physical activities. Aerosol Air Qual. Res. 2012, 12, 803–813. [Google Scholar]
- Rodríguez, S.; Cuevas, E.; González, Y.; Ramos, R.; Romero, P.M.; Pérez, N.; Querol, X.; Alastuey, A. Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5–10 concentrations in a coastal city. Atmos. Environ. 2008, 42, 6523–6534. [Google Scholar] [CrossRef]
- Reche, C.; Querol, X.; Alastuey, A.; Viana, M.; Pey, J.; Moreno, T.; Rodríguez, S.; González, Y.; Fernández-Camacho, R.; de la Campa, A.M.S.; et al. New considerations for PM, black carbon and particle number concentration for air quality monitoring across different European cities. Atmos. Chem. Physics 2011, 11, 6207–6227. [Google Scholar] [CrossRef] [Green Version]
- European Council Directive 2013/59/EURATOM—Protection Against Ionising Radiation. Available online: http://www.ecolex.org/ecolex/ledge/view/RecordDetails?index=documents&id=LEX-FAOC130004 (accessed on 22 September 2015).
- Weichenthal, S.; Dufresne, A.; Infante-Rivard, C.; Joseph, L. Characterizing and predicting ultrafine particle counts in Canadian classrooms during the winter months: Model development and evaluation. Environ. Res. 2008, 106, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Rivas, I.; Viana, M.; Moreno, T.; Pandolfi, M.; Amato, F.; Reche, C.; Bouso, L.; Àlvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; et al. Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environ. Int. 2014, 69, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Zwoździak, A.; Sówka, I.; Krupińska, B.; Zwoździak, J.; Nych, A. Infiltration or indoor sources as determinants of the elemental composition of particulate matter inside a school in Wrocław, Poland? Build. Environ. 2013, 66, 173–180. [Google Scholar] [CrossRef]
- Rovelli, S.; Cattaneo, A.; Nuzzi, C.P.; Spinazzè, A.; Piazza, S.; Carrer, P.; Cavallo, D.M. Airborne particulate matter in school classrooms of northern Italy. Int. J. Environ. Res. Public Health 2014, 11, 1398–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stranger, M.; Potgieter-Vermaak, S.S.; Van Grieken, R. Characterization of indoor air quality in primary schools in Antwerp, Belgium. Indoor Air 2008, 18, 454–463. [Google Scholar] [CrossRef]
- Wichmann, J.; Lind, T.; Nilsson, M.A.M.; Bellander, T. PM2.5, soot and NO2 indoor-outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmos. Environ. 2010, 44, 4536–4544. [Google Scholar] [CrossRef]
- Ghirga, G.; Pipere, M. Are children safe indoor from outdoor air pollution? A short review. Open J. Pediatr. 2012, 2, 93–96. [Google Scholar] [CrossRef]
- Wardoyo, A.Y.P.; Santjojo, D.H.; Putri, I.I.H. Indoor outdoor ultrafine particle measurements in lecture rooms. Int. J. Basic Appl. Sci. 2012, 12, 198–201. [Google Scholar]
- Almeida, S.M.; Canha, N.; Silva, A.; Do Carmo Freitas, M.; Pegas, P.; Alves, C.; Evtyugina, M.; Pio, C.A. Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmos. Environ. 2011, 45, 7594–7599. [Google Scholar] [CrossRef]
- Santamouris, M.; Synnefa, A.; Asssimakopoulos, M.; Livada, I.; Pavlou, K.; Papaglastra, M.; Gaitani, N.; Kolokotsa, D.; Assimakopoulos, V. Experimental investigation of the air flow and indoor carbon dioxide concentration in classrooms with intermittent natural ventilation. Energy Build. 2008, 40, 1833–1843. [Google Scholar] [CrossRef]
- Coley, D.A.; Beisteiner, A. Carbon dioxide levels and ventilation rates in schools. Int. J. Vent. 2002, 1, 45–52. [Google Scholar]
- Jurelionis, A. Indoor air quality in classrooms of renovated school building in Lithuania. In Proceedings of the 25th AIVC Conference, Prague, Czech Republic, 15–17 September 2004.
- Samudio, M.J.J.V.; Silva, E.; Fernandes, O.; Cuedes, J.; Vasconcelos, M. Detailled air study in a school in Porto. Proc. Healthy Build. 2006, 345–350. [Google Scholar]
- Heiselberg, P.; Perino, M. Short-term airing by natural ventilation - implication on iaq and thermal comfort. Indoor Air 2010, 20, 126–140. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuoco, F.C.; Stabile, L.; Buonanno, G.; Trassiera, C.V.; Massimo, A.; Russi, A.; Mazaheri, M.; Morawska, L.; Andrade, A. Indoor Air Quality in Naturally Ventilated Italian Classrooms. Atmosphere 2015, 6, 1652-1675. https://doi.org/10.3390/atmos6111652
Fuoco FC, Stabile L, Buonanno G, Trassiera CV, Massimo A, Russi A, Mazaheri M, Morawska L, Andrade A. Indoor Air Quality in Naturally Ventilated Italian Classrooms. Atmosphere. 2015; 6(11):1652-1675. https://doi.org/10.3390/atmos6111652
Chicago/Turabian StyleFuoco, Fernanda Carmen, Luca Stabile, Giorgio Buonanno, Concepcion Vargas Trassiera, Angelamaria Massimo, Aldo Russi, Mandana Mazaheri, Lidia Morawska, and Alexandro Andrade. 2015. "Indoor Air Quality in Naturally Ventilated Italian Classrooms" Atmosphere 6, no. 11: 1652-1675. https://doi.org/10.3390/atmos6111652
APA StyleFuoco, F. C., Stabile, L., Buonanno, G., Trassiera, C. V., Massimo, A., Russi, A., Mazaheri, M., Morawska, L., & Andrade, A. (2015). Indoor Air Quality in Naturally Ventilated Italian Classrooms. Atmosphere, 6(11), 1652-1675. https://doi.org/10.3390/atmos6111652