Mapping Global Atmospheric CO2 Concentration at High Spatiotemporal Resolution
Abstract
:1. Introduction
2. Data
3. Method
3.1. Fusing CO2 Measurements from GOSAT and SCIAMACHY
3.2. Gap-Filling Method for the Fused Data
Season | Month | Latitude Range | Long Radii of Ellipse | Short Radii of Ellipse |
---|---|---|---|---|
Winter | 12, 1, 2 | 90 to 65 | 550 | 600 |
65 to 30 | 1250 | 900 | ||
30 to −10 | 1000 | 600 | ||
−10 to −30 | 1100 | 550 | ||
−30 to −60 | 800 | 900 | ||
−60 to −90 | 900 | 1200 | ||
Spring | 3, 4, 5 | 90 to 60 | 550 | 700 |
60 to 30 | 1550 | 1000 | ||
30 to −0 | 1000 | 750 | ||
0 to −30 | 750 | 500 | ||
−30 to −65 | 400 | 650 | ||
−65 to −90 | 900 | 500 | ||
Summer | 6, 7, 8 | 90 to 65 | 550 | 650 |
65 to 30 | 1100 | 750 | ||
30 to 15 | 800 | 600 | ||
15 to −30 | 1200 | 800 | ||
−30 to −70 | 800 | 650 | ||
−70 to −90 | 800 | 550 | ||
Autumn | 9, 10, 11 | 90 to 65 | 600 | 800 |
65 to 35 | 1200 | 750 | ||
35 to 10 | 900 | 600 | ||
10 to −30 | 1000 | 600 | ||
−30 to −70 | 900 | 600 | ||
−70 to −90 | 800 | 500 |
4. Results and Discussion
4.1. Global Spatial Distribution of XCO2 for Fused ACOS and BESD Data
4.2. Estimating and Modeling Experimental Semivariograms of ACOS, BESD, and Fused XCO2 Data
4.3. Comparison of the Interpolated Map of the Fused CO2 with that of Single Satellite CO2
Month | Data | Mean | Max | Min |
---|---|---|---|---|
4 | ACOS | 1.85 | 2.75 | 1.70 |
BESD | 2.34 | 3.80 | 2.04 | |
Fused | 1.76 | 3.31 | 1.49 | |
7 | ACOS | 1.89 | 2.90 | 1.82 |
BESD | 2.37 | 3.83 | 2.05 | |
Fused | 1.80 | 3.14 | 1.66 | |
10 | ACOS | 1.84 | 3.05 | 1.71 |
BESD | 2.17 | 3.45 | 1.84 | |
Fused | 1.61 | 3.07 | 1.29 |
4.4. Monthly Variability for Predicting the Fused Data
4.5. Comparison of Kriging Interpolation Results with Total Carbon Column Observing Network (TCCON) Measurements
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK/New York, NY, USA, 2007; pp. 137–140. [Google Scholar]
- Friedlingstein, P.; Cox, P.; Betts, R.; Bopp, L.; von Bloh, W.; Brovkin, V.; Cadule, P.; Doney, S.; Eby, M.; Fung, I.; et al. Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Clim. 2006, 19, 3337–3353. [Google Scholar] [CrossRef]
- Alkhaled, A.; Michalak, A.M.; Kawa, S.R.; Olsen, S.; Wang, J.W. A global evaluation of the regional spatial variability of column integrated CO2 Distributions. J. Geophys. Res. 2008. [Google Scholar] [CrossRef]
- Araki, M.; Morino, I.; Machida, T.; Sawa, Y.; Matsueda, H.; Ohyama, H.; Yokota, T.; Uchino, O. CO2 column-averaged volume mixing ratio derived over Tsukuba from measurements by commercial airlines. Atmos. Chem. Phys. 2010, 10, 7659–7667. [Google Scholar] [CrossRef]
- Rayner, P.J.; O’Brien, D.M. The utility of remotely sensed CO2 concentration data in surface source inversions. Geophys. Res. Lett. 2001. [Google Scholar] [CrossRef]
- Hammerling, D.M.; Michalak, A.M.; Kawa, S.R. Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2. J. Geophys. Res. 2012. [Google Scholar] [CrossRef]
- Orbiting Carbon Observatory 2 (OCO-2). Available online: http//www.nasa.gov/jpl/oco2/virtual-time-machine-20140718/#.U9RtX6JHKJc (accessed on 18 July 2014).
- Yokota, T.; Oguma, H.; Morino, I.; Inoue, G. A nadir looking SWIR FTS to monitor CO2 column density for Japanese GOSAT project. In Proceedings of the 24th International Symposium on Space Technology and Science, Miyazaki, Japan, 30 May–6 June 2004.
- Buchwitz, M.; Beek, R.; Burrows, J.P.; Bovensmann, H.; Warneke, T.; Notholt, J.; Meirink, J.F.; Goede, A.P.H.; Bergamaschi, P.; Korner, S.; et al. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models. Atmos. Chem. Phys. 2005, 5, 941–962. [Google Scholar] [CrossRef]
- Reuter, M.; Buchwitz, M.; Schneising, O.; Heymann, J.; Bovensmann, H.; Burrows, J.P. A method for improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds. Atmos. Meas. Tech. 2010, 3, 209–232. [Google Scholar] [CrossRef]
- Wang, T.X.; Shi, J.C.; Jing, Y.Y.; Xie, Y.H. Investigation of the consistency of atmospheric CO2 retrievals from different space-based sensors: Intercomparison and spatiotemporal analysis. Chin. Sci. Bull. 2013, 58, 4161–4170. [Google Scholar] [CrossRef]
- Morino, I.; Uchino, O.; Inoue, M.; Yoshida, Y.; Yokota, T.; Wennberg, P.O.; Toon, G.C.; Wunch, D.; Roehl, C.M.; Notholt, J.; et al. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmos. Meas. Tech. 2011, 4, 1061–1076. [Google Scholar]
- Wang, T.X.; Shi, J.C.; Jing, Y.Y.; Zhao, T.X.; Ji, D.B.; Xiong, C. Combining XCO2 measurements derived from SCIAMACHY and GOSAT for potentially generating global CO2 maps with high spatiotemporal resolution. PLoS One 2014. [Google Scholar] [CrossRef]
- Hammerling, D.M.; Michalak, A.M.; O’Dell, C.; Kawa, S.R. Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT). Geophys. Res. Lett. 2012. [Google Scholar] [CrossRef]
- Yokota, T.; Watanabe, H.; Hayashi, K.; Takaichi, K.; Shimono, Y.; Suga, T. NIES GOSAT Project. In Algorithm Theoretical Basis Document for GOSAT TANSO-FTS L3; NIES-GOSAT-PO-017, V 1.0; National Institute for Environmental Studies: Tsukuba, Japan, 2011; pp. 3–25. [Google Scholar]
- Liu, Y.; Wang, X.; Guo, M.; Tani, H. Mapping the FTS SWIR L2 product of XCO2 and XCH4 data from the GOSAT by the Kriging method—A case study in East Asia. Int. J. Remote Sens. 2012, 33, 3004–3025. [Google Scholar] [CrossRef]
- Tomosada, M.; Kanefuji, K.; Matsumoto, Y.; Tsubaki, H. A prediction method of the global distribution map of CO2 column abundance retrieved from GOSAT observation derived from ordinary Kriging. In Proceedings of the ICROS-SICE International Joint Conference, Fukuoka, Japan, 18–21 August 2009.
- Zeng, Z.C.; Lei, L.P.; Guo, L.J.; Zhang, L.; Zhang, B. Incorporating temporal variability to improve geostatistical analysis of satellite-observed CO2 in China. Chin. Sci. Bull. 2013, 58, 1948–1954. [Google Scholar] [CrossRef]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. SOLA 2009, 5, 160–163. [Google Scholar] [CrossRef]
- O’Dell, C.W.; Connor, B.; Bösch, H.; O’Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Eldering, D.; Fisher, B.; Gunson, M.; et al. The ACOS CO2 retrieval algorithm—Part 1: Description and validation against synthetic observations. Atmos. Meas. Tech. 2012, 5, 99–121. [Google Scholar] [CrossRef]
- Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Nobuta, K.; Tran, H.; Morino, I.; Yokota, T. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite. Atmos. Meas. Tech. 2011, 4, 717–734. [Google Scholar] [CrossRef]
- Oshchepkov, S.; Bril, A.; Yokota, T. PPDF-based method to account for atmospheric light scattering in observations of carbon dioxide from space. J. Geophys. Res. 2008. [Google Scholar] [CrossRef]
- Bösch, H.; Baker, D.; Connor, B.; Crisp, D.; Miller, C. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the orbiting carbon observatory-2 mission. Remote Sens. 2011, 3, 270–304. [Google Scholar]
- Butz, A.; Hasekamp, O.P.; Frankenberg, C.; Aben, I. Retrievals of atmospheric CO2 from simulated space-borne measurementsof backscattered near-infrared sunlight: Accounting for aerosol effects. Appl. Opt. 2009, 48, 3322–3336. [Google Scholar] [CrossRef] [PubMed]
- Bovensmann, H.; Burrows, J.P.; Buchwitz, M.; Frerick, J.; Noël, S.; Rozanov, V.V.; Chance, K.V.; Goede, A.P.H. SCIAMACHY—Mission objectives and measurement modes. J. Atmos. Sci. 1999, 56, 127–150. [Google Scholar] [CrossRef]
- Burrows, J.P.; Holzle, E.; Goede, A.P.H.; Visser, H.; Fricke, W. SCIAMACHY—scanning imaging absorption spectrometer for atmospheric chartography. Acta Astronaut. 1995, 35, 445–451. [Google Scholar] [CrossRef]
- Cracknell, A.P.; Varotsos, C. Editorial and cover: Fifty years after the first artificial satellite: From Sputnik 1 to ENVISAT. Int. J. Remote Sens. 2007, 28, 2071–2072. [Google Scholar]
- SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACY). Available online: http//www.sciamachy.org (accessed on 15 June 2014).
- Reuter, M.; Bovensmann, H.; Buchwitz, M.; Burrows, J.P.; Heymann, J.; Connor, B.J.; Deutscher, N.M.; Griffith, D.W.T.; Heymann, J.; Keppel-Aleks, G.; et al. Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results. J. Geophys. Res. 2011. [Google Scholar] [CrossRef]
- Osterman, G.; Eldering, A.; Avis, C.; O’Dell, C.; Martinez, E.; Crisp, D.; Frankenberg, C.; Fisher, B.; Wunch, D. ACOS 3.3 Level 2 Standard Product Data User’s Guide, v3.3; GES DISC: Greenbelt, MD, USA, 2011. [Google Scholar]
- Peters, W.; Jacobson, A.R.; Sweeney, C.; Andrews, A.E.; Conway, T.J.; Masarie, K.; Miller, J.B.; Bruhwiler, L.M.P.; Petron, G.; Hirsch, A.I.; et al. An atmospheric perspective on North America carbon dioxide exchange: Carbon Tracker. Proc. Natl. Acad. Sci. USA 2007, 104, 18925–18930. [Google Scholar] [CrossRef]
- Wunch, D.; Toon, G.C.; Blavier, J.-F.L.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.T.; Sherlock, V.; Wennberg, P.O. The total carbon column observing network. Phil. Trans. R. Soc. A. 2011. [Google Scholar] [CrossRef]
- Rodgers, C.D.; Connor, B.J. Intercomparison of remote sounding instruments. J. Geophys. Res. 2003. [Google Scholar] [CrossRef]
- Bai, W.G.; Zhang, X.Y.; Zhang, P. Temporal and distribution of tropospheric CO2 over China based on satellite observation. Chin. Sci. Bull. 2010. [Google Scholar] [CrossRef]
- Wunch, D.; Wennberg, P.O.; Toon, G.C.; Connor, B.J.; Fisher, B.; Osterman, G.B.; Frankenberg, C.; Mandrake, L.; O’Dell, C.; Ahonen, P.; et al. A method for evaluating bias in global measurements of CO2 total columns from space. Atmos. Chem. Phys. 2011, 11, 12317–12337. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, Y.; Shi, J.; Wang, T.; Sussmann, R. Mapping Global Atmospheric CO2 Concentration at High Spatiotemporal Resolution. Atmosphere 2014, 5, 870-888. https://doi.org/10.3390/atmos5040870
Jing Y, Shi J, Wang T, Sussmann R. Mapping Global Atmospheric CO2 Concentration at High Spatiotemporal Resolution. Atmosphere. 2014; 5(4):870-888. https://doi.org/10.3390/atmos5040870
Chicago/Turabian StyleJing, Yingying, Jiancheng Shi, Tianxing Wang, and Ralf Sussmann. 2014. "Mapping Global Atmospheric CO2 Concentration at High Spatiotemporal Resolution" Atmosphere 5, no. 4: 870-888. https://doi.org/10.3390/atmos5040870
APA StyleJing, Y., Shi, J., Wang, T., & Sussmann, R. (2014). Mapping Global Atmospheric CO2 Concentration at High Spatiotemporal Resolution. Atmosphere, 5(4), 870-888. https://doi.org/10.3390/atmos5040870