Diurnal Analysis of Nor’westers over Gangetic West Bengal as Observed from Weather Radar
Abstract
1. Introduction
2. Methodology
2.1. Study Domain and Datasets
2.2. Method of Identification and Classification of Cells
2.3. Determine the Long Term Storm Characteristics
3. Results and Discussion
3.1. Analysis of Cell Characteristics
3.1.1. Cell Initiation and Duration
3.1.2. Cell Core Convective Area
3.1.3. Maximum Reflectivity
3.1.4. Echo Top Height
3.2. Spatial and Temporal Distribution of Severe Weather
3.2.1. Hail
3.2.2. Lightning
3.2.3. Convective Rain
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, R.; Munim, A.; Begum, Q.; Karmaker, S. A diagnostic study on some local severe storms over Bangladesh. J.-Bangladesh Acad. Sci. 1994, 18, 81. [Google Scholar]
- Karmakar, S.; Alam, M.M. Tropospheric moisture and its relation with rainfall due to nor’westers in Bangladesh. Mausam 2007, 58, 153–160. [Google Scholar] [CrossRef]
- Yamane, Y.; Hayashi, T. Evaluation of environmental conditions for the formation of severe local storms across the Indian subcontinent. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Tyagi, A. Thunderstorm climatology over Indian region. Mausam 2007, 58, 189–212. [Google Scholar] [CrossRef]
- Srinivasan, V.; Ramamurthy, K.; Nene, Y. Discussion of typical synoptic weather situation, summer nor’westers and andhis and large scale convective activity over peninsula and central parts of the country. In FMU Rep No. III-2.2; India Meteorological Department: New Delhi, India, 1973. [Google Scholar]
- Das, S. Climatology of Thunderstorms Over the SAARC Region; SAARC Meteorological Research Centre: Dhaka, Bangladesh, 2010. [Google Scholar]
- Byers, H.R. Structure and dynamics of the thunderstorm. Science 1949, 110, 291–294. [Google Scholar] [CrossRef]
- Ogura, Y.; Takahashi, T. Numerical simulation of the life cycle of a thunderstorm cell. Mon. Weather Rev. 1971, 99, 895–911. [Google Scholar] [CrossRef]
- Wapler, K. The life-cycle of hailstorms: Lightning, radar reflectivity and rotation characteristics. Atmos. Res. 2017, 193, 60–72. [Google Scholar] [CrossRef]
- IMD. Nor’wester of Bengal. In IMD Technical Note no. 10; India Meteorological Department: New Delhi, India, 1944. [Google Scholar]
- Karmakar, S. Climatology of thunderstorm days over Bangladesh during the pre-monsoon season. Bangladesh J. Sci. Technol. 2001, 3, 103–112. [Google Scholar]
- Manohar, G.; Kandalgaonkar, S.; Tinmaker, M. Thunderstorm activity over India and the Indian southwest monsoon. J. Geophys. Res. Atmos. 1999, 104, 4169–4188. [Google Scholar] [CrossRef]
- Kandalgaonkar, S.; Tinmaker, M.; Kulkarni, M.; Nath, A. Thunderstorm activity and sea surface temperature over the island stations and along the east and west coast of India. Mausam 2002, 53, 245–248. [Google Scholar] [CrossRef]
- Krishna, N.M.; Sudeepkumar, B.; Bhagwat, S.; Jain, B. Characterisation of thermodynamic indices and their performance in thunderstorm prediction over India using radiosonde observations. Nat. Hazards 2025, 1–35. [Google Scholar] [CrossRef]
- Desai, B. Mechanism of Nor’westers of Bengal. Mausam 1950, 1, 74–76. [Google Scholar] [CrossRef]
- Koteswaram, P.; Srinivasan, V. Thunderstorms over Gangetic West Bengal in the pre-monsoon season and the synoptic factors favourable for their formation. Mausam 1958, 9, 301–312. [Google Scholar] [CrossRef]
- Weston, K. The dry-line of Northern India and its role in cumulonimbus convection. Q. J. R. Meteorol. Soc. 1972, 98, 519–531. [Google Scholar] [CrossRef]
- Tyagi, A.; Sikka, D.; Goyal, S.; Bhowmick, M. A satellite based study of pre-monsoon thunderstorms (Nor’westers) over eastern India and their organization into mesoscale convective complexes. Mausam 2012, 63, 29–54. [Google Scholar] [CrossRef]
- Bojinski, S.; Blaauboer, D.; Calbet, X.; De Coning, E.; Debie, F.; Montmerle, T.; Nietosvaara, V.; Norman, K.; Bañón Peregrín, L.; Schmid, F.; et al. Towards nowcasting in Europe in 2030. Meteorol. Appl. 2023, 30, e2124. [Google Scholar] [CrossRef]
- Binetti, M.S.; Campanale, C.; Massarelli, C.; Uricchio, V.F. The use of weather radar data: Possibilities, challenges and advanced applications. Earth 2022, 3, 157–171. [Google Scholar] [CrossRef]
- He, S.; Wang, Z.; Wang, D.; Liao, W.; Wu, X.; Lai, C. Spatiotemporal variability of event-based rainstorm: The perspective of rainfall pattern and concentration. Int. J. Climatol. 2022, 42, 6258–6276. [Google Scholar] [CrossRef]
- Sokol, Z.; Szturc, J.; Orellana-Alvear, J.; Popova, J.; Jurczyk, A.; Célleri, R. The role of weather radar in rainfall estimation and its application in meteorological and hydrological modelling—A review. Remote Sens. 2021, 13, 351. [Google Scholar] [CrossRef]
- Sama, B.; Uma, K.; Das, S.K. A comprehensive assessment of the temporal and spatial variation of hail producing convective storms over eastern India using weather radar. Clim. Dyn. 2024, 62, 4749–4773. [Google Scholar] [CrossRef]
- Raj, B.; Sahoo, S.; Puviarasan, N.; Chandrasekar, V. Operational assessment of high resolution weather radar based precipitation nowcasting system. Atmosphere 2024, 15, 154. [Google Scholar] [CrossRef]
- Bhat, G.; Vivekanandan, J.; Pradhan, D. Evolution of radar meteorology in India and the latest trends. Mausam 2025, 76, 55–64. [Google Scholar] [CrossRef]
- Doviak, R.; Zrnic, D. Doppler Radar & Weather Observations; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Pauley, P.M.; Wu, X. The Theoretical, Discrete, and Actual Response of the Barnes Objective Analysis Scheme for One- and Two-Dimensional Fields. Mon. Weather Rev. 1990, 118, 1145–1164. [Google Scholar] [CrossRef]
- Steiner, M.; Houze, R.A., Jr.; Yuter, S.E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteorol. Climatol. 1995, 34, 1978–2007. [Google Scholar] [CrossRef]
- Feng, Z.; Varble, A.; Hardin, J.; Marquis, J.; Hunzinger, A.; Zhang, Z.; Thieman, M. Deep convection initiation, growth, and environments in the complex terrain of Central Argentina during CACTI. Mon. Weather Rev. 2022, 150, 1135–1155. [Google Scholar] [CrossRef]
- Feng, Z.; Song, F.; Sakaguchi, K.; Leung, L.R. Evaluation of mesoscale convective systems in climate simulations: Methodological development and results from MPAS-CAM over the United States. J. Clim. 2021, 34, 2611–2633. [Google Scholar] [CrossRef]
- Padfield, D. Masked Object Registration in the Fourier Domain. IEEE Trans. Image Process. 2012, 21, 2706–2718. [Google Scholar] [CrossRef]
- Feng, Z.; Hardin, J.; Barnes, H.C.; Li, J.; Leung, L.R.; Varble, A.; Zhang, Z. PyFLEXTRKR: A flexible feature tracking Python software for convective cloud analysis. Geosci. Model Dev. 2023, 16, 2753–2776. [Google Scholar] [CrossRef]
- Karmakar, S. Use of Radar and Satellite Imageries in the Study of Nor’westers in Bangladesh. J. NOAMI 2017, 34, 17–32. [Google Scholar]
- Sharma, P.; Sen, B.; Balling, R.; Roy, S.; Roy, S. Diurnal cycle of summer season thunderstorm activity in India. Theor. Appl. Climatol. 2022, 151, 1567–1583. [Google Scholar] [CrossRef]
- Sahu, R.; Nayak, S.; Singh, K.; Nayak, H.; Tyagi, B. Evaluating the impact of topography on the initiation of Nor’westers over eastern India. Geomat. Nat. Hazards Risk 2023, 14, 2184669. [Google Scholar] [CrossRef]
- Potvin, C.K.; Gallo, B.T.; Reinhart, A.E.; Roberts, B.; Skinner, P.S.; Sobash, R.A.; Wilson, K.A.; Britt, K.C.; Broyles, C.; Flora, M.L.; et al. An Iterative Storm Segmentation and Classification Algorithm for Convection-Allowing Models and Gridded Radar Analyses. J. Atmos. Ocean. Technol. 2022, 39, 999–1013. [Google Scholar] [CrossRef]
- Kundu, S.S.; Chhari, A.; Srivastava, A.; Chakravorty, A.; Gogoi, R.B.; Aggarwal, S.P. Investigation of thunderstorm characteristics with severe lightning events over NE region of India. ISPRS Ann. Photogram. Remote Sens. Spatial Inform. Sci. 2024, X-5-2024, 95–101. [Google Scholar] [CrossRef]
- Peterson, M. A survey of thunderstorms that produce megaflashes across the Americas. Earth Space Sci. 2023, 10, e2023EA002920. [Google Scholar] [CrossRef]
- Maddox, R.A.; Zaras, D.S.; MacKeen, P.L.; Gourley, J.J.; Rabin, R.; Howard, K.W. Echo Height Measurements with the WSR-88D: Use of Data from One Versus Two Radars. Weather Forecast. 1999, 14, 455–460. [Google Scholar] [CrossRef]
- Mangla, R.; Indu, J.; Lakshmi, V. Evaluation of convective storms using spaceborne radars over the Indo-Gangetic Plains and western coast of India. Meteorol. Appl. 2020, 27, e1917. [Google Scholar] [CrossRef]
- Kunz, M.; Kugel, P.I. Detection of hail signatures from single-polarization C-band radar reflectivity. Atmos. Res. 2015, 153, 565–577. [Google Scholar] [CrossRef]
- Skripniková, K.; Řezáčová, D. Radar-based hail detection. Atmos. Res. 2014, 144, 175–185. [Google Scholar] [CrossRef]
- Witt, A.; Eilts, M.D.; Stumpf, G.J.; Johnson, J.; Mitchell, E.D.W.; Thomas, K.W. An enhanced hail detection algorithm for the WSR-88D. Weather Forecast. 1998, 13, 286–303. [Google Scholar] [CrossRef]
- Sharma, P.; Sen Roy, S. Hailstorms over India during the summer season. Meteorol. Atmos. Phys. 2023, 135, 41. [Google Scholar] [CrossRef]
- Vincent, B.R.; Carey, L.D.; Schneider, D.; Keeter, K.; Gonski, R. Using WSR-88D reflectivity data for the prediction of cloud-to-ground lightning: A central North Carolina study. Natl. Wea. Dig 2004, 27, 35–44. [Google Scholar]
- Gremillion, M.S.; Orville, R.E. Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Weather Forecast. 1999, 14, 640–649. [Google Scholar] [CrossRef]
- Hondl, K.D.; Eilts, M.D. Doppler radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground lightning. Mon. Weather Rev. 1994, 122, 1818–1836. [Google Scholar] [CrossRef]
- Mishra, M.; Guria, R.; Acharyya, T.; Das, U.; Santos, C.A.G.; da Silva, R.M.; Laksono, F.A.T.; Kumari, R. Spatiotemporal analysis of lightning flash clusters and fatalities between 2000 and 2020 over West Bengal, India. Nat. Hazards 2024, 120, 3533–3564. [Google Scholar] [CrossRef]
- Midya, S.; Pal, S.; Dutta, R.; Gole, P.; Chattopadhyay, G.; Karmakar, S.; Saha, U.; Hazra, S. A preliminary study on pre-monsoon summer thunderstorms using ground-based total lightning data over Gangetic West Bengal. Indian J. Phys. 2021, 95, 1–9. [Google Scholar] [CrossRef]
- Cecil, D.; Buechler, D.; Blakeslee, R. Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmosp. Res. 2013, 135–136, 404–414. [Google Scholar] [CrossRef]
- Karmakar, S. Nor’Westers in Bangladesh During the Pre-Monsoon Season. Ph.D. Thesis, University of Engineering and Technology, Khulna, Bangladesh, 2005. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raj, B.; Sahoo, S.; Puviarasan, N.; Chandrasekar, V. Diurnal Analysis of Nor’westers over Gangetic West Bengal as Observed from Weather Radar. Atmosphere 2025, 16, 989. https://doi.org/10.3390/atmos16080989
Raj B, Sahoo S, Puviarasan N, Chandrasekar V. Diurnal Analysis of Nor’westers over Gangetic West Bengal as Observed from Weather Radar. Atmosphere. 2025; 16(8):989. https://doi.org/10.3390/atmos16080989
Chicago/Turabian StyleRaj, Bibraj, Swaroop Sahoo, N. Puviarasan, and V. Chandrasekar. 2025. "Diurnal Analysis of Nor’westers over Gangetic West Bengal as Observed from Weather Radar" Atmosphere 16, no. 8: 989. https://doi.org/10.3390/atmos16080989
APA StyleRaj, B., Sahoo, S., Puviarasan, N., & Chandrasekar, V. (2025). Diurnal Analysis of Nor’westers over Gangetic West Bengal as Observed from Weather Radar. Atmosphere, 16(8), 989. https://doi.org/10.3390/atmos16080989