Synergistic Effects of Ambient PM2.5 and O3 with Natural Temperature Variability on Non-Accidental and Cardiovascular Mortality: A Historical Time Series Analysis in Urban Taiyuan, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
2.2.1. Analysis of the Association Between Environmental Factors and Mortality
2.2.2. Evaluation of the Death Risk of Ambient Pollution Modified by Temperature
2.2.3. Sensitivity Analyses
3. Results
3.1. Descriptive Statistics
3.2. The Interaction Between Air Pollution and Temperature on Mortality
3.3. Subgroup Analysis
3.4. Sensitivity Analysis on the Model
4. Discussion
4.1. Modification Effects Made by Temperature on Air Pollution-Induced Mortality
4.2. Possible Mechanism of High Temperature Enhancing the Interactions of PM2.5 or O3 with Human Health
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dedoussi, I.C.; Eastham, S.D.; Monier, E.; Barrett, S.R.H. Premature mortality related to United States cross-state air pollution. Nature 2020, 578, 261–265. [Google Scholar] [CrossRef]
- Guan, Y.; Xiao, Y.; Wang, F.; Qiu, X.; Zhang, N. Health impacts attributable to ambient PM2.5 and ozone pollution in major Chinese cities at seasonal-level. J. Clean. Prod. 2021, 311, 127510. [Google Scholar] [CrossRef]
- Tajudin, M.A.B.A.; Kubo, R.; Ng, C.F.S.; Hashizume, M.; Seposo, X.; Kim, Y.; Nishikawa, H.; Takano, H.; Ueda, K. The effect modification of PM2.5 and ozone on the short-term associations between temperature and mortality across the urban areas of Japan. Environ. Health Prev. Med. 2024, 29, 57. [Google Scholar] [CrossRef]
- Dimitrova, A.; Ingole, V.; Basagaña, X.; Ranzani, O.; Milà, C.; Ballester, J.; Tonne, C. Association between ambient temperature and heat waves with mortality in South Asia: Systematic review and meta-analysis. Environ. Int. 2021, 146, 106170. [Google Scholar] [CrossRef]
- Vicedo-Cabrera, A.M.; Scovronick, N.; Sera, F.; Royé, D.; Schneider, R.; Tobias, A.; Astrom, C.; Honda, Y.; Hondula, D.M.; Abrutzky, R.; et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Chang. 2021, 11, 492–500. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, L.; Yin, P.; Kan, H.; Chen, R.; Zhou, M. Heat exposure and dementia-related mortality in China. JAMA Netw. Open. 2024, 7, e2419250. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Choi, H.M.; Kim, D.; Honda, Y.; Leon Guo, Y.-L.; Kim, H. Synergic effect between high temperature and air pollution on mortality in Northeast Asia. Environ. Res. 2019, 178, 108735. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Yan, M.; Liu, X.; Zhong, Y.; Ban, J.; Lu, K.; Li, T. Exposure to concurrent heatwaves and ozone pollution and associations with mortality risk: A nationwide study in China. Environ. Health Perspect. 2024, 132, 47012. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yang, J.; Li, M.; Chen, J.; Ou, C.-Q. Nonlinear and lagged meteorological effects on daily levels of ambient PM2.5 and O3: Evidence from 284 Chinese cities. J. Clean. Prod. 2021, 278, 123931. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, Y.; Han, C.; Fang, Q.; Cui, F.; Li, X. Effects of extreme temperature events on deaths and its interaction with air pollution. Sci. Total Environ. 2024, 915, 170212. [Google Scholar] [CrossRef]
- Qu, K.; Yan, Y.; Wang, X.; Jin, X.; Vrekoussis, M.; Kanakidou, M.; Brasseur, G.P.; Lin, T.; Xiao, T.; Cai, X.; et al. The Effect of Cross-Regional Transport on Ozone and Particulate Matter Pollution in China: A Review of Methodology and Current Knowledge. Sci. Total Environ. 2024, 947, 174196. [Google Scholar] [CrossRef]
- Wang, F.; Huang, W.J.; Shi, F.; Li, Y.; Li, Y.Y.; Zhang, Q.Y.; Shang, Y.X.; Chen, N.; Xu, W.; Cheng, Q. Critical exposure windows of PM2.5-Meteorological interactions triggering pediatric mycoplasma pneumoniae epidemics: An age-stratified distributed lag nonlinear modeling approach. J. Environ. Manag. 2025, 391, 126533. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef]
- Han, D.; Zhang, T.; Zhang, X.; Tan, Y. Study on spatiotemporal characteristics and influencing factors of pedestrian-level PM2.5 concentrations in outdoor open spaces of Harbin in winter, using a generalized additive model (GAM). Urban Clim. 2022, 46, 101313. [Google Scholar] [CrossRef]
- Shi, W.; Sun, Q.; Du, P.; Tang, S.; Chen, C.; Sun, Z.; Wang, J.; Li, T.; Shi, X. Modification effects of temperature on the ozone–mortality relationship: A nationwide multicounty study in China. Environ. Sci. Technol. 2020, 54, 2859–2868. [Google Scholar] [CrossRef]
- Jhun, I.; Fann, N.; Zanobetti, A.; Hubbell, B. Effect modification of ozone-related mortality risks by temperature in 97 US cities. Environ. Int. 2014, 73, 128–134. [Google Scholar] [CrossRef]
- Zhang, S.; Breitner, S.; Stafoggia, M.; Donato, F.D.; Samoli, E.; Zafeiratou, S.; Katsouyanni, K.; Rao, S.; Diz-Lois Palomares, A.; Gasparrini, A.; et al. Effect modification of air pollution on the association between heat and mortality in five European countries. Environ. Res. 2024, 263, 120023. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.; Chen, J.; Yang, C.; Li, Y.; Wang, M.; Bao, J. Associations between air pollution and daily outpatient visits for dry eye disease and the effect modification of temperature. BMC Public Health 2025, 25, 1163. [Google Scholar] [CrossRef]
- Sun, S.; Cao, P.; Chan, K.-P.; Tsang, H.; Wong, C.-M.; Thach, T.-Q. Temperature as a modifier of the effects of fine particulate matter on acute mortality in Hong Kong. Environ. Pollut. 2015, 205, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Li, Z.; Ji, J.S.; Chen, B.; Yin, X.; Zhang, W.; Liu, F.; Shen, H.; Xiang, H. Interaction between extreme temperature events and fine particulate matter on cardiometabolic multimorbidity: Evidence from four national cohort studies. Environ. Sci. Technol. 2024, 58, 12379–12389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fan, L.; Wang, S.; Luo, H. Short-term interaction effects of PM2.5 and O3 on daily mortality: A time-series study of multiple cities in China. Toxics 2024, 12, 578. [Google Scholar] [CrossRef] [PubMed]
- Tobaldini, E.; Iodice, S.; Bonora, R.; Bonzini, M.; Brambilla, A.; Sesana, G.; Bollati, V.; Montano, N. Out-of-hospital cardiac arrests in a large metropolitan area: Synergistic effect of exposure to air particulates and high temperature. Eur. J. Prev. Cardiol. 2020, 27, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Pascal, M.; Falq, G.; Wagner, V.; Chatignoux, E.; Corso, M.; Blanchard, M.; Host, S.; Pascal, L.; Larrieu, S. Short-term impacts of particulate matter (PM10, PM10–2.5, PM2.5) on mortality in nine French cities. Atmos. Environ. 2014, 95, 175–184. [Google Scholar] [CrossRef]
- Bont, J.; Rajiva, A.; Mandal, S.; Stafoggia, M.; Banerjee, T.; Dholakia, H.; Garg, A.; Ingole, V.; Jaganathan, S.; Kloog, I.; et al. Synergistic associations of ambient air pollution and heat on daily mortality in India. Environ. Int. 2025, 199, 109426. [Google Scholar] [CrossRef]
- Cao, H.; Xu, R.; Lu, X.; Jiang, W.; Wang, L.; Yu, M.; Wang, W.; Yuan, J. Air pollution, temperature and mumps: A time-series study of independent and interaction effects. Ecotoxicol. Environ. Saf. 2025, 291, 117826. [Google Scholar] [CrossRef]
- Chen, K.; Yang, H.B.; Ma, Z.W.; Bi, J.; Huang, L. Influence of temperature to the short-term effects of various ozone metrics on daily mortality in Suzhou, China. Atmos. Environ. 2013, 79, 119–128. [Google Scholar] [CrossRef]
- Diao, L.J.; Gao, Z.H.; Jiang, Y.C.; Chen, Z.S.; Li, N.; Meng, X.F.; Xu, X.; Li, J. Linear and interactive effects of air pollution and diurnal temperature range on COPD Mortality in Weifang, China: A time series analysis. Biomed. Environ. Sci. 2021, 34, 662–666. [Google Scholar] [CrossRef]
- Feng, S.; Huang, F.; Zhang, Y.; Feng, Y.; Zhang, Y.; Cao, Y.; Wang, X. The pathophysiological and molecular mechanisms of atmospheric PM2.5 affecting cardiovascular health: A review. Ecotoxicol. Environ. Saf. 2023, 249, 114444. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y.; Li, J. Characteristics and sources of VOCs in a coastal city in eastern China and the implications in secondary organic aerosol and O3 formation. Sci. Total Environ. 2023, 887, 164117. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lee, H.L.; Jung, W.T.; Sung, F.C.; Su, T.C. The association between urinary levels of 1,3-butadiene metabolites, cardiovascular risk factors, microparticles, and oxidative stress products in adolescents and young adults. J. Hazard. Mater. 2020, 396, 122745. [Google Scholar] [CrossRef]
- Aladağ, E. Forecasting of particulate matter with a hybrid ARIMA model based on wavelet transformation and seasonal adjustment. Urban. Clim. 2021, 39, 100930. [Google Scholar] [CrossRef]
- Krock, M.; Bessac, J.; Stein, M.L.; Monahan, A.H. Nonstationary seasonal model for daily mean temperature distribution bridging bulk and tails. Weather Clim. Extrem. 2022, 36, 100438. [Google Scholar] [CrossRef]
- GB 3095-2012; People’s Republic of China, Ministry of Ecology and Environment. Standards Press of China: Beijing, China, 2012.
- Zhou, H.; Geng, H.; Dong, C.; Bai, T. The short-term harvesting effects of ambient particulate matter on mortality in Taiyuan elderly residents: A time-series analysis with a generalized additive distributed lag model. Ecotox. Environ. Saf. 2021, 207, 111235. [Google Scholar] [CrossRef] [PubMed]
- Royé, D.; Zarrabeitia, M.T.; Riancho, J.; Santurtún, A. A time series analysis of the relationship between apparent temperature, air pollutants and ischemic stroke in Madrid, Spain. Environ. Res. 2019, 173, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yin, P.; Meng, X.; Wang, L.; Liu, C.; Niu, Y.; Liu, Y.; Liu, J.; Qi, J.; You, J.; et al. Associations between coarse particulate matter air pollution and cause-specific mortality: A nationwide analysis in 272 Chinese cities. Environ. Health Perspect. 2019, 127, 017008. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yin, P.; Wang, L.; Zhang, X.; Liu, J.; Liu, Y.; Zhou, M. Ambient ozone pollution and years of life lost: Association, effect modification, and additional life gain from a nationwide analysis in China. Environ. Int. 2020, 141, 105771. [Google Scholar] [CrossRef] [PubMed]
- Saulo, H.; Souza, R.; Vila, R.; Leiva, V.; Aykroyd, R.G. Modeling mortality based on pollution and temperature using a new birnbaum–saunders autoregressive moving average structure with regressors and related-sensors data. Sensors 2021, 21, 6518. [Google Scholar] [CrossRef]
- Stafoggia, M.; Schneider, A.; Cyrys, J.; Samoli, E.; Andersen, Z.J.; Bedada, G.B.; Bellander, T.; Cattani, G.; Eleftheriadis, K.; Faustini, A.; et al. Association between short-term exposure to ultrafine particles and mortality in eight European urban areas. Epidemiology 2017, 28, 172–180. [Google Scholar] [CrossRef]
- Anderson, B.G.; Bell, M.L. Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology 2009, 20, 205–213. [Google Scholar] [CrossRef]
- Kim, M.; Lim, Y.; Oh, J.; Myung, J.; Han, C.; Bae, H.; Kim, S.; Hong, Y.; Lee, D. Long-Term Ozone Exposure, COPD, and Asthma Mortality: A Retrospective Cohort Study in the Republic of Korea. Atmosphere 2024, 15, 1340. [Google Scholar] [CrossRef]
- Bae, S.; Lim, Y.H.; Oh, J.M.; Kwon, H.J. Mediation of daily ambient ozone concentration on association between daily mean temperature and mortality in 7 metropolitan cities of Korea. Environ. Int. 2023, 178, 108078. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, T.T.; Zhang, Y.H.; Xu, Y.J.; Lao, X.Q.; Rutherford, S.; Chu, C.; Luo, Y.; Zhu, Q.; Xu, X.J.; et al. The short-term effect of ambient ozone on mortality is modified by temperature in Guangzhou, China. Atmos. Environ. 2013, 76, 59–67. [Google Scholar] [CrossRef]
- Fu, G.; Cheng, H.; Lu, Q.; Liu, H.; Zhang, X.; Zhang, X. The synergistic effect of high temperature and ozone on the number of deaths from circulatory system diseases in Shijiazhuang, China. Front. Public Health 2023, 11, 1266643. [Google Scholar] [CrossRef]
- Schenker, N.; Gentleman, J.F. On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat. 2001, 55, 182–186. [Google Scholar] [CrossRef]
- Zeka, A.; Zanobetti, A.; Schwartz, J. Individual-level modifiers of the effects of particulate matter on daily mortality. Am. J. Epidemiol. 2006, 163, 849–859. [Google Scholar] [CrossRef]
- Duan, Y.; Liao, Y.; Li, H.; Yan, S.; Zhao, Z.; Yu, S.; Fu, Y.; Wang, Z.; Yin, P.; Cheng, J.; et al. Effect of changes in season and temperature on cardiovascular mortality associated with nitrogen dioxide air pollution in Shenzhen, China. Sci. Total Environ. 2019, 697, 134051. [Google Scholar] [CrossRef]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B 2011, 73, 3–36. [Google Scholar] [CrossRef]
- Tu, H.; Hu, Y.; Hu, K.; Dong, P.; Wen, Y.; Jiang, J.; Xu, X.; Huang, J.; Zhu, J.; He Liu, Y. Assessment of the respiratory disease mortality risk from single and composite exposures to PM2.5 and ozone—Guangzhou City, Guangdong Province, China, 2018–2021. China CDC Wkly. 2024, 6, 857–861. [Google Scholar] [CrossRef]
- Cheng, Y.; Kan, H. Effect of the interaction between outdoor air pollution and extreme temperature on daily mortality in Shanghai, China. J. Epidemiol. 2012, 22, 28–36. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, W.; Chen, C.; Ban, J.; Xu, D.; Zhu, P.; He, M.Z.; Li, T. Acute effect of multiple ozone metrics on mortality by season in 34 Chinese counties in 2013–2015. J. Intern. Med. 2018, 283, 481–488. [Google Scholar] [CrossRef]
- Hu, S.; Xue, X.; Xu, J.; Yin, P.; Meng, X.; Kan, H.; Chen, R.; Zhou, M.; Xu, J.F. Association of short-term exposure to ambient air pollution and temperature with bronchiectasis mortality: A nationwide time-stratified case-crossover study. EBioMedicine 2024, 110, 105465. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Chen, R.; Wang, L.; Meng, X.; Liu, C.; Niu, Y.; Lin, Z.; Liu, Y.; Liu, J.; Qi, J.; et al. Ambient ozone pollution and daily mortality: A nationwide study in 272 Chinese cities. Environ. Health Perspect. 2017, 125, 117006. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; He, Q.; Jiang, Y.; Wong, J.M.J.; Li, J.; Liu, J.; Wang, R.; Chen, R.; Dai, Y.; Ge, J. Low ambient temperature and incident myocardial infarction with or without obstructive coronary arteries: A Chinese nationwide study. Eur. Heart J. 2025, 46, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhang, Y.; Zhang, W.; Li, S.; Chen, G.; Wu, Y.; Qiu, C.; Ying, K.; Tang, H.; Huang, J.-A.; et al. Ambient temperature and emergency department visits: Time-series analysis in 12 Chinese cities. Environ. Pollut. 2017, 224, 310–316. [Google Scholar] [CrossRef]
- Li, G.; Zeng, Q.; Pan, X. Disease burden of ischaemic heart disease from short-term outdoor air pollution exposure in Tianjin, 2002–2006. Eur. J. Prev. Cardiol. 2016, 23, 1774–1782. [Google Scholar] [CrossRef]
- Yang, C.; Yang, H.; Guo, S.; Wang, Z.; Xu, X.; Duan, X.; Kan, H. Alternative ozone metrics and daily mortality in Suzhou: The China Air Pollution and Health Effects Study (CAPES). Sci. Total Environ. 2012, 426, 83–89. [Google Scholar] [CrossRef]
- Xu, R.; Sun, H.; Zhong, Z.; Zheng, Y.; Liu, T.; Li, Y.; Liu, L.; Luo, L.; Wang, S.; Lv, Z.; et al. Ozone, heat wave, and cardiovascular disease mortality: A population-based case-crossover study. Environ. Sci. Technol. 2024, 58, 171–181. [Google Scholar] [CrossRef]
- Shin, H.H.; Parajuli, R.P.; Gogna, P.; Maquiling, A.; Dehghani, P. Pollutant-sex specific differences in respiratory hospitalization and mortality risk attributable to short-term exposure to ambient air pollution. Sci. Total Environ. 2021, 755, 143135. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, K.; Peng, S.; Tan, Y.; Tong, J.; Wang, B.; Cai, H.; Liu, F.; Xiang, H. Climate change and air pollution can amplify vulnerability of glucose metabolism: The mediating effects of biological aging. Environ. Res. 2025, 272, 121183. [Google Scholar] [CrossRef]
- Yang, J.; Yin, P.; Sun, J.; Wang, B.; Zhou, M.; Li, M.; Tong SLMeng, B.H.; Guo, Y.M.; Liu, Q.Y. Heatwave and mortality in 31 major Chinese cities: Definition, vulnerability and implications. Sci. Total Environ. 2019, 649, 695–702. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, L.; Sun, S.; Wang, X.; Lu, B.; Han, H.; Yang, J.; Wang, A. Projections of temperature-related cause-specific mortality under climate change scenarios in a coastal city of China. Environ. Int. 2020, 143, 105889. [Google Scholar] [CrossRef]
- Ma, C.; Yang, J.; Nakayama, S.F.; Honda, Y. The association between temperature variability and cause-specific mortality: Evidence from 47 Japanese prefectures during 1972–2015. Environ. Int. 2019, 127, 125–133. [Google Scholar] [CrossRef]
- Kang, Y.T.; Tang, H.S.; Zhang, L.F.; Wang, S.; Wang, X.; Chen, Z.; Zheng, C.Y.; Yang, Y.; Wang, Z.W.; Huang, G.; et al. Long-term temperature variability and the incidence of cardiovascular diseases: A large, representative cohort study in China. Environ. Pollut. 2021, 278, 116831. [Google Scholar] [CrossRef]
- Peters, A.; Schneider, A. Cardiovascular risks of climate change. Nat. Rev. Cardiol. 2021, 18, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Lawrence, W.R.; Zhang, W.; Zhang, D.; Yu, S.; Hao, Y. Interactions between climate factors and air pollution on daily HFMD cases: A time series study in Guangdong, China. Sci. Total Environ. 2019, 656, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Wu, Y.; He, L.; Wang, L.; Fu, Y.; Zhang, F.; Krafft, T.; Martens, P. Acute effects of ambient nitrogen oxides and interactions with temperature on cardiovascular mortality in Shenzhen, China. Chemosphere 2022, 287, 132255. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Maharajan, K.; Liu, K.; Zhang, Y. Role of atmospheric particulate matter exposure in COVID-19 and other health risks in human: A review. Environ. Res. 2021, 198, 111281. [Google Scholar] [CrossRef]
- Heo, S.; Lee, W.; Bell, M. Suicide and associations with air pollution and ambient temperature: A systematic review and meta-analysis. Int. J. Environ. Res. Publ. Health 2021, 18, 7699. [Google Scholar] [CrossRef]
- Li, L.; Nakamura, T.; Hayano, J.; Yamamoto, Y. Seasonal sleep variations and their association with meteorological factors: A Japanese population study using large-scale body acceleration data. Front. Digit. Health 2021, 3, 677043. [Google Scholar] [CrossRef]
- Holmes, S.M.; Dressel, S.; Morel, J.; Spitzer, R.; Ball, J.P.; Ericsson, G.; Singh, N.J.; Widemo, F.; Cromsigt, J.P.G.M.; Danell, K. Increased summer temperature is associated with reduced calf mass of a circumpolar large mammal through direct thermoregulatory and indirect, food quality, pathways. Oecologia 2023, 201, 1123–1136. [Google Scholar] [CrossRef]
- Pattenden, S.; Armstrong, B.; Milojevic, A.; Heal, M.R.; Chalabi, Z.; Doherty, R.; Barratt, B.; Kovats, R.S.; Wilkinson, P. Ozone, heat and mortality: Acute effects in 15 British conurbations. Occup. Environ. Med. 2010, 67, 699–707. [Google Scholar] [CrossRef]
Variables | Mean ± SD | Min | P25 | Median | P75 | Max | |
---|---|---|---|---|---|---|---|
Death number | Non-accidental | 40.6 ± 8.8 | 16.0 | 34.0 | 40.0 | 46.0 | 76.0 |
Male | 23.9 ± 6.0 | 7.0 | 20.0 | 23.0 | 27.0 | 44.0 | |
Female | 16.7 ± 2.7 | 4.0 | 14.0 | 17.0 | 19.0 | 32.0 | |
<65 | 10.5 ± 1.4 | 3.0 | 9.0 | 11.0 | 12.0 | 14.0 | |
≥65 | 30.1 ± 7.4 | 12.0 | 25.0 | 29.0 | 34.0 | 62.0 | |
Cold season | 44.1 ± 9.0 | 26.0 | 38.0 | 44.0 | 50.0 | 76.0 | |
Warm season | 38.0 ± 7.6 | 16.0 | 33.0 | 37.0 | 43.0 | 65.0 | |
Cardiovascular disease | 19.8 ± 5.6 | 3.0 | 16.0 | 20.0 | 23.0 | 54.0 | |
Male | 8.4 ± 3.5 | 1.0 | 7.0 | 8.0 | 11.0 | 24.0 | |
Female | 6.1 ± 2.9 | 0 | 4.0 | 7.0 | 8.0 | 16.0 | |
<65 | 2.5 ± 1.9 | 0 | 2.0 | 3.0 | 4.0 | 8.0 | |
≥65 | 13.0 ± 4.6 | 2.0 | 9.0 | 12.0 | 15.0 | 37.0 | |
Cold season | 22.0 ± 5.9 | 12.0 | 18.0 | 22.0 | 25.0 | 54.0 | |
Warm season | 18.3 ± 4.8 | 5.0 | 15.0 | 18.0 | 21.0 | 36.0 | |
Air pollutants (μg/m3) | PM2.5 | 62.0 ± 43.8 | 4.0 | 32.0 | 51.0 | 78.0 | 442.0 |
PM10 | 121.2 ± 64.8 | 12.0 | 75.1 | 110.0 | 150.2 | 538.0 | |
SO2 | 48.5 ± 52.7 | 2.0 | 15.0 | 30.0 | 59.6 | 428.0 | |
NO2 | 42.5 ± 16.6 | 5.0 | 31.0 | 40.0 | 52.0 | 117.0 | |
O3 8 h-max | 53.5 ± 35.7 | 3.0 | 26.0 | 46.0 | 74.0 | 226.0 | |
Meteorological factors | Temperature (°C) | 11.4 ± 10.3 | −15.5 | 2.0 | 12.0 | 21.0 | 34.0 |
Relative Humidity (%) | 55.3 ± 18.2 | 11.0 | 41.0 | 56.0 | 69.0 | 98.0 |
Pollutants | Variables | NAD | CVD | ||
---|---|---|---|---|---|
Percentage Increase (95% CI) | p Value b | Percentage Increase (95% CI) | p Value b | ||
PM2.5 | Independent | 1.05 (0.05, 2.06) * | 1.29 (0.12, 2.47) * | ||
Low | −1.76 (−3.67, 0.19) | 0.003 | 0.09 (−0.55, 0.74) | <0.001 | |
Medium | −0.42 (−1.72, 0.89) | 0.014 | 0.35 (−0.54, 1.25) | 0.002 | |
High | 1.22 (0.27, 2.18) * | reference | 1.75 (0.11, 3.42) * | reference | |
O3 | Independent | 0.57 (0.23, 0.92) ** | 1.03 (0.14, 1.93) * | ||
Low | −0.10 (−0.89, 0.70) | 0.098 | −0.52 (−3.63, 2.70) | 0.178 | |
Medium | 0.21 (−1.22, 1.65) | 0.611 | −0.18 (−2.32, 2.00) | 0.093 | |
High | 0.58 (0.02, 1.14) * | reference | 1.68 (0.11, 3.28) * | reference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Geng, H.; Tian, J.; Wu, L.; Zhang, Z.; Zhang, D. Synergistic Effects of Ambient PM2.5 and O3 with Natural Temperature Variability on Non-Accidental and Cardiovascular Mortality: A Historical Time Series Analysis in Urban Taiyuan, China. Atmosphere 2025, 16, 971. https://doi.org/10.3390/atmos16080971
Zhou H, Geng H, Tian J, Wu L, Zhang Z, Zhang D. Synergistic Effects of Ambient PM2.5 and O3 with Natural Temperature Variability on Non-Accidental and Cardiovascular Mortality: A Historical Time Series Analysis in Urban Taiyuan, China. Atmosphere. 2025; 16(8):971. https://doi.org/10.3390/atmos16080971
Chicago/Turabian StyleZhou, Huan, Hong Geng, Jingjing Tian, Li Wu, Zhihong Zhang, and Daizhou Zhang. 2025. "Synergistic Effects of Ambient PM2.5 and O3 with Natural Temperature Variability on Non-Accidental and Cardiovascular Mortality: A Historical Time Series Analysis in Urban Taiyuan, China" Atmosphere 16, no. 8: 971. https://doi.org/10.3390/atmos16080971
APA StyleZhou, H., Geng, H., Tian, J., Wu, L., Zhang, Z., & Zhang, D. (2025). Synergistic Effects of Ambient PM2.5 and O3 with Natural Temperature Variability on Non-Accidental and Cardiovascular Mortality: A Historical Time Series Analysis in Urban Taiyuan, China. Atmosphere, 16(8), 971. https://doi.org/10.3390/atmos16080971