Spatiotemporal Ionospheric TEC Prediction with Deformable Convolution for Long-Term Spatial Dependencies
Abstract
1. Introduction
2. Data and Data Processing
3. Methodology
3.1. The Original SA-ConvLSTM
3.1.1. Self-Attention Memory (SAM) Module
- Feature aggregation:
- Memory updating:
- Output:
3.1.2. SA-ConvLSTM
3.2. SA-DConvLSTM
3.3. The Proposed ED-SA-DConvLSTM
4. Experimental Results
4.1. Evaluation Metrics
4.2. Model Optimization
4.3. The Input and Output Length
4.4. Ablation Experiment
4.5. Comparison with Other Models
4.5.1. Overall Quantitative Comparison
4.5.2. Visual Comparison of Various Models
4.5.3. Comparison Under Extreme Situations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Liu, H.; Yuan, J.; Le, H.; Shan, W.; Li, L. MAOOA-Residual-Attention-BiConvLSTM: An Automated Deep Learning Framework for Global TEC Map Prediction. Space Weather 2024, 22, e2024SW003954. [Google Scholar] [CrossRef]
- Komjathy, A.; Langley, R.B. An Assessment of Predicted and Measured Ionospheric Total Electron Content Using a Regional GPS Network. In Proceedings of the 1996 National Technical Meeting of The Institute of Navigation, Santa Monica, CA, USA, 22–24 January 1996. [Google Scholar]
- Gao, X.; Yao, Y. A Storm-Time Ionospheric TEC Model with Multichannel Features by the Spatiotemporal ConvLSTM Network. J. Geod. 2023, 97, 9. [Google Scholar] [CrossRef]
- Nishioka, M.; Saito, S.; Tao, C.; Shiota, D.; Tsugawa, T.; Ishii, M. Statistical Analysis of Ionospheric Total Electron Content (TEC): Long-Term Estimation of Extreme TEC in Japan. Earth Planets Space 2021, 73, 52. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.H.; Lindqwister, U.J.; Runge, T.F. A Global Mapping Technique for GPS-Derived Ionospheric Total Electron Content Measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Jakowski, N.; Mayer, C.; Hoque, M.M.; Wilken, V. Total Electron Content Models and Their Use in Ionosphere Monitoring. Radio Sci. 2011, 46, 1–11. [Google Scholar] [CrossRef]
- Sardón, E.; Rius, A.; Zarraoa, N. Estimation of the Transmitter and Receiver Differential Biases and the Ionospheric Total Electron Content from Global Positioning System Observations. Radio Sci. 1994, 29, 577–586. [Google Scholar] [CrossRef]
- Zhukov, A.V.; Yasyukevich, Y.V.; Bykov, A.E. Correction to: GIMLi: Global Ionospheric Total Electron Content Model Based on Machine Learning. GPS Solut. 2020, 25, 21. [Google Scholar] [CrossRef]
- Lean, J.L.; Emmert, J.T.; Picone, J.M.; Meier, R.R. Global and Regional Trends in Ionospheric Total Electron Content. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Sivavaraprasad, G.; Deepika, V.S.; SreenivasaRao, D.; Ravi Kumar, M.; Sridhar, M. Performance Evaluation of Neural Network TEC Forecasting Models over Equatorial Low-Latitude Indian GNSS Station. Geod. Geodyn. 2020, 11, 192–201. [Google Scholar] [CrossRef]
- Saharan, S.; Maurya, A.K.; Dube, A.; Patil, O.M.; Singh, R.; Sharma, H. Low Latitude Ionospheric TEC Response to the Solar Flares during the Peak of Solar Cycle 24. Adv. Space Res. 2023, 72, 3890–3902. [Google Scholar] [CrossRef]
- Hu, T.; Lei, Y.; Su, J.; Yang, H.; Ni, W.; Gao, C.; Yu, J.; Wang, Y.; Gu, Y. Learning Spatiotemporal Features of DSA Using 3D CNN and BiConvGRU for Ischemic Moyamoya Disease Detection. Int. J. Neurosci. 2023, 133, 512–522. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Ning, S. DeepSTCL: A Deep Spatio-Temporal ConvLSTM for Travel Demand Prediction. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Wang, X.; Xie, W.; Song, J. Learning Spatiotemporal Features with 3DCNN and ConvGRU for Video Anomaly Detection. In Proceedings of the 2018 14th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 12–16 August 2018; pp. 474–479. [Google Scholar]
- Jiang, Z.; Zhang, Z.; He, X.; Li, Y.; Yuan, H. Efficient and Accurate TEC Modeling and Prediction Approach with Random Forest and Bi-LSTM for Large-Scale Region. Adv. Space Res. 2024, 73, 650–662. [Google Scholar] [CrossRef]
- Liu, L.; Zou, S.; Yao, Y.; Wang, Z. Forecasting Global Ionospheric TEC Using Deep Learning Approach. Space Weather 2020, 18, e2020SW002501. [Google Scholar] [CrossRef]
- Wen, Z.; Li, S.; Li, L.; Wu, B.; Fu, J. Ionospheric TEC Prediction Using Long Short-Term Memory Deep Learning Network. Astrophys. Space Sci. 2021, 366, 3. [Google Scholar] [CrossRef]
- Alemu, G.B.; Ejigu, Y.G. Prediction of Ionospheric Total Electron Content over Low Latitude Region: Case Study in Ethiopia. Adv. Space Res. 2024, 74, 284–302. [Google Scholar] [CrossRef]
- Sun, W.; Xu, L.; Huang, X.; Zhang, W.; Yuan, T.; Chen, Z.; Yan, Y. Forecasting of Ionospheric Vertical Total Electron Content (TEC) Using LSTM Networks. In Proceedings of the 2017 International Conference on Machine Learning and Cybernetics (ICMLC), Nanjing, China, 9–11 July 2017; Volume 2, pp. 340–344. [Google Scholar]
- Xie, T.; Dai, Z.; Zhu, X.; Chen, B.; Ran, C. LSTM-Based Short-Term Ionospheric TEC Forecast Model and Positioning Accuracy Analysis. GPS Solut. 2023, 27, 66. [Google Scholar] [CrossRef]
- Tang, J.; Liu, C.; Yang, D.; Ding, M. Prediction of Ionospheric TEC Using a GRU Mechanism Method. Adv. Space Res. 2024, 74, 260–270. [Google Scholar] [CrossRef]
- Li, D.; Jin, Y.; Wu, F.; Zhao, J.; Min, P.; Luo, X. A Hybrid Model for TEC Prediction Using BiLSTM and PSO-LSSVM. Adv. Space Res. 2024, 74, 303–318. [Google Scholar] [CrossRef]
- Maheswaran, V.K.; Baskaradas, J.A.; Nagarajan, R.; Anbazhagan, R.; Subramanian, S.; Devanaboyina, V.R.; Das, R.M. Bi-LSTM Based Vertical Total Electron Content Prediction at Low-Latitude Equatorial Ionization Anomaly Region of South India. Adv. Space Res. 2024, 73, 3782–3796. [Google Scholar] [CrossRef]
- Mao, S.; Li, H.; Zhang, Y.; Shi, Y. Prediction of Ionospheric Electron Density Distribution Based on CNN-LSTM Model. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Kaselimi, M.; Doulamis, N.; Voulodimos, A.; Doulamis, A.; Delikaraoglou, D. Spatio-Temporal Ionospheric TEC Prediction Using a Deep CNN-GRU Model on GNSS Measurements. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11 July 2021; pp. 8317–8320. [Google Scholar]
- Ren, X.; Zhao, B.; Ren, Z.; Wang, Y.; Xiong, B. Deep Learning-Based Prediction of Global Ionospheric TEC During Storm Periods: Mixed CNN-BiLSTM Method. Space Weather 2024, 22, e2024SW003877. [Google Scholar] [CrossRef]
- Han, C.; Guo, Y.; Ou, M.; Wang, D.; Song, C.; Jin, R.; Zhen, W.; Bai, P.; Chong, X.; Wang, X. A Lightweight Prediction Model for Global Ionospheric Total Electron Content Based on Attention-BiLSTM. Adv. Space Res. 2024, 75, 3614–3629. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Yuan, J.; Li, L.; Zhang, L. TEC Prediction Based on Att-CNN-BiLSTM. IEEE Access 2024, 12, 68471–68484. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 28. [Google Scholar]
- Chen, J.; Zhi, N.; Liao, H.; Lu, M.; Feng, S. Global Forecasting of Ionospheric Vertical Total Electron Contents via ConvLSTM with Spectrum Analysis. GPS Solut. 2022, 26, 69. [Google Scholar] [CrossRef]
- Liu, L.; Morton, Y.J.; Liu, Y. ML Prediction of Global Ionospheric TEC Maps. Space Weather 2022, 20, e2022SW003135. [Google Scholar] [CrossRef]
- Xu, C.; Ding, M.; Tang, J. Prediction of GNSS-Based Regional Ionospheric TEC Using a Multichannel ConvLSTM with Attention Mechanism. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Le, H.; Yuan, J.; Shan, W.; Han, Y.; Yuan, G.; Cui, C.; Wang, J. Spatiotemporal Prediction of Ionospheric Total Electron Content Based on ED-ConvLSTM. Remote Sens. 2023, 15, 3064. [Google Scholar] [CrossRef]
- de Paulo, M.C.M.; Marques, H.A.; Feitosa, R.Q.; Ferreira, M.P. New Encoder–Decoder Convolutional LSTM Neural Network Architectures for next-Day Global Ionosphere Maps Forecast. GPS Solut. 2023, 27, 95. [Google Scholar] [CrossRef]
- Yang, J.; Huang, W.; Xia, G.; Zhou, C.; Chen, Y. Operational Forecasting of Global Ionospheric TEC Maps 1-, 2-, and 3-Day in Advance by ConvLSTM Model. Remote Sens. 2024, 16, 1700. [Google Scholar] [CrossRef]
- Tang, J.; Zhong, Z.; Ding, M.; Yang, D.; Liu, H. Forecast of Ionospheric TEC Maps Using ConvGRU Deep Learning Over China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3334–3344. [Google Scholar] [CrossRef]
- Tang, J.; Zhong, Z.; Hu, J.; Wu, X. Forecasting Regional Ionospheric TEC Maps over China Using BiConvGRU Deep Learning. Remote Sens. 2023, 15, 3405. [Google Scholar] [CrossRef]
- Luo, W.; Li, Y.; Urtasun, R.; Zemel, R. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2016; Volume 29. [Google Scholar]
- Lin, Z.; Li, M.; Zheng, Z.; Cheng, Y.; Yuan, C. Self-Attention ConvLSTM for Spatiotemporal Prediction. Proc. AAAI Conf. Artif. Intell. 2022, 34, 11531–11538. [Google Scholar] [CrossRef]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450. [Google Scholar]
- Lavesson, N.; Davidsson, P. Quantifying the Impact of Learning Algorithm Parameter Tuning. Proc. AAAI Conf. Artif. Intell. 2006, 6, 395–400. [Google Scholar]
- Weerts, H.J.P.; Mueller, A.C.; Vanschoren, J. Importance of Tuning Hyperparameters of Machine Learning Algorithms. arXiv 2020, arXiv:2007.07588. [Google Scholar]
- Blagoveshchensky, D.V.; Maltseva, O.A.; Sergeeva, M.A. Impact of Magnetic Storms on the Global TEC Distribution. Ann. Geophys. 2018, 36, 1057–1071. [Google Scholar] [CrossRef]
- Noll, C.E. The Crustal Dynamics Data Information System: A Resource to Support Scientific Analysis Using Space Geodesy. Adv. Space Res. 2010, 45, 1421–1440. [Google Scholar] [CrossRef]
Feature Aggregation | |
---|---|
1 | Receive the short-term memory feature of the current time step and the long-term memory feature of the previous time step. |
2 | Obtain , , , , through linear transformations of and . |
3 | Calculate the similarity scores of and separately to obtain , . |
4 | Weight and separately to obtain and , and concatenate them to obtain . |
5 | Concatenate and to obtain a new feature . |
Memory updating | |
6 | and are operated to obtain the long-term memory feature of the current time step. |
Output | |
7 | and are operated to obtain the updated short-term memory feature of the current time step. |
Model | Hyperparameter Setting | |
---|---|---|
The Number of Convolution Kernels | The Size of Convolution Kernels | |
ConvGRU | 30 | 3 |
ConvLSTM | 64 | 5 |
ED-SA-DConvLSTM | 30 | 3 |
Solar Activity | Model | Improved | |
---|---|---|---|
High solar activity (2015) | ED-SA-ConvLSTM | 3.6150 | -- |
ED-SA-DConvLSTM | 3.5777 | 1.03% | |
Low solar activity (2019) | ED-SA-ConvLSTM | 1.3645 | -- |
ED-SA-DConvLSTM | 1.3517 | 0.94% |
Solar Activity | Model | ||
---|---|---|---|
2015 (High) | C1PG | 4.0295 | 16.12% |
ConvGRU | 3.9144 | 14.76% | |
ConvLSTM | 3.8936 | 14.47% | |
ED-SA-DConvLSTM | 3.5777 | 13.20% | |
2019 (Low) | C1PG | 1.5421 | 14.95% |
ConvGRU | 1.4325 | 14.70% | |
ConvLSTM | 1.4222 | 14.01% | |
ED-SA-DConvLSTM | 1.3517 | 13.72% |
Events | Model | Improvement (C1PG/ConvGRU/ConvLSTM) | |
---|---|---|---|
Case 1 | C1PG | 8.9381 | - |
ConvGRU | 9.2155 | - | |
ConvLSTM | 9.0865 | - | |
ED-SA-DConvLSTM | 6.3869 | +28.5%/+30.7%/+29.7% | |
Case 2 | C1PG | 5.0921 | - |
ConvGRU | 5.5086 | - | |
ConvLSTM | 5.2444 | - | |
ED-SA-DConvLSTM | 4.0530 | +20.4%/+26.4%/+22.7% | |
Case 3 | C1PG | 4.0527 | - |
ConvGRU | 4.2831 | - | |
ConvLSTM | 4.2376 | - | |
ED-SA-DConvLSTM | 3.6020 | +11.1%/+15.9%/+15.0% | |
Case 4 | C1PG | 5.7812 | - |
ConvGRU | 5.6792 | - | |
ConvLSTM | 5.8194 | - | |
ED-SA-DConvLSTM | 4.8164 | +16.6%/+15.1%/+17.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Xiao, J.; Liu, H.; Du, X.; Liu, S. Spatiotemporal Ionospheric TEC Prediction with Deformable Convolution for Long-Term Spatial Dependencies. Atmosphere 2025, 16, 950. https://doi.org/10.3390/atmos16080950
Li J, Xiao J, Liu H, Du X, Liu S. Spatiotemporal Ionospheric TEC Prediction with Deformable Convolution for Long-Term Spatial Dependencies. Atmosphere. 2025; 16(8):950. https://doi.org/10.3390/atmos16080950
Chicago/Turabian StyleLi, Jie, Jian Xiao, Haijun Liu, Xiaofeng Du, and Shixiang Liu. 2025. "Spatiotemporal Ionospheric TEC Prediction with Deformable Convolution for Long-Term Spatial Dependencies" Atmosphere 16, no. 8: 950. https://doi.org/10.3390/atmos16080950
APA StyleLi, J., Xiao, J., Liu, H., Du, X., & Liu, S. (2025). Spatiotemporal Ionospheric TEC Prediction with Deformable Convolution for Long-Term Spatial Dependencies. Atmosphere, 16(8), 950. https://doi.org/10.3390/atmos16080950