Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.3.1. Backward Trajectory Model
2.3.2. Terrain Ruggedness Index
3. Results
3.1. Change in 8 h O3 Concentration
3.1.1. Temporal Variation of 8 h O3 Concentration
3.1.2. Spatial Variations in 8 h O3 Concentration
3.2. Situation of Elevated 8 h O3 Concentration
3.2.1. Temporal Variation of Elevated 8 h O3 Concentration
3.2.2. Spatial Distribution of Elevated 8 h O3 Concentration
4. Discussion
4.1. Meteorological Factors
4.2. Topographic Factor
4.3. Potential Source of Substances
5. Conclusions
- (1)
- The spatial heterogeneity of 8 h O3 concentration within the YRD urban agglomeration was significant, showing a trend of higher concentrations along the coast and lower concentrations in the inland areas, as well as higher concentrations in the plains and lower concentrations in the hills. This differed from the spatial characteristics of the concentration exceeding standards, which were primarily concentrated in the northeastern region, dominated by heavy industry, and the central region, dominated by light industry. The average number of days exceeding the 8 h O3 concentration standard at each monitoring station was 41.05 days, with concentrations continuing to rise at a rate of 0.91 ± 0.98 μg·m−3·a−1. This trend indicates that air quality management requires further enhancement.
- (2)
- The 8 h O3 concentration in the YRD urban agglomeration was significantly influenced by high temperatures and low humidity, as well as by wind speed and topography. However, when the wind speed was below 2 m·s−1, the proportion of time when concentrations exceeded the standard tended to decrease as the wind speed decreased, and it was approximately 0% when the wind speed was below 1 m·s−1. This observation suggests that the exceedance of 8 h O3 concentrations in the study area was primarily caused by the transport effect of external pollutants.
- (3)
- The potential contribution areas for the excess O3 concentration were very limited within the study area and were mostly discontinuously distributed in the inland regions outside the area. This indicates that in the future, while effectively controlling pollutant emissions, the YRD urban agglomeration should also implement a production-based technical compensation mechanism between regions to reduce the emission intensity of external pollutants, thereby enhancing public health and quality of life.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, L.J.; Zhao, T.L.; Liu, J.; Wang, H.L.; Bai, Y.Q. Meteorological impacts on interannual anomalies of O3 import over Twain-Hu Basin. Sci. Total Environ. 2023, 888, 164065. [Google Scholar] [CrossRef]
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. Int. 2018, 25, 8074–8088. [Google Scholar] [CrossRef]
- GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioral, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef]
- Macintyre, H.L.; Mitsakou, C.; Vieno, M.; Heal, M.; Heaviside, C.; Exley, K. Future impacts of O3 on respiratory hospital admission in the UK from current emissions policies. Environ. Int. 2023, 178, 108046. [Google Scholar] [CrossRef]
- Anagha, K.S.; Kuttippurath, J. Surface ozone pollution-driven risks for the yield of major food crops under future climate change scenarios in India. Environ. Res. 2025, 275, 121390. [Google Scholar] [CrossRef]
- Sanchez, D.R.; Jespersen, B.M.; Rasmussen, L.H.; Andersen, M.L. Ozone treatment of wheat reduces common bunt (Tilletia spp.) infection. J. Stored Prod. Res. 2025, 111, 102488. [Google Scholar] [CrossRef]
- Shu, X.; Xia, Z.L.; Ying, Q.; Fu, Y.H.; Qiao, X.; Tang, Y. Investigating the causes of O3 pollution in the western rim of Sichuan basin, southwestern China. Atmos. Pollut. Res. 2023, 14, 101803. [Google Scholar] [CrossRef]
- Shu, Z.Z.; Zhao, T.L.; Chen, Y.S.; Liu, Y.B.; Yang, F.M.; Jiang, Y.C.; He, G.Q.; Yang, Q.J.; Zhang, Y.Q. Terrain effect on atmospheric process in seasonal ozone variation over the Sichuan Basin, Southwest China. Environ. Pollut. 2023, 338, 122622. [Google Scholar] [CrossRef]
- Banta, R.; Senff, C.; Alvarez, R.; Langford, A.; Parrish, D.; Trainer, M.; Darby, L.; Hardesty, R.; Lambeth, B.; Neuman, J.; et al. Dependence of daily peak O3 concentrations near Houston, Texas on environmental factors: Wind speed, temperature, and boundary-layer depth. Atmos. Environ. 2011, 45, 162–173. [Google Scholar] [CrossRef]
- Hui, K.L.; Yuan, Y.; Xi, B.D.; Tan, W.B. A review of the factors affecting the emission of the ozone chemical precursors VOCs and NOx from the soil. Environ. Int. 2023, 172, 107799. [Google Scholar] [CrossRef]
- Xu, J.X.; Wang, S.; Mai, B.R.; Zheng, Y.F.; Qiu, S.; Tian, W.X.; Kang, H.Q.; Zhang, X.; Gao, J.H. Evaluations on numerical simulations of ozone dry deposition over the Yangtze River Delta. Atmos. Environ. 2023, 304, 119760. [Google Scholar] [CrossRef]
- Wang, L.L.; Li, M.G.; Wang, Q.L.; Li, Y.Y.; Xin, J.Y.; Tang, X.; Du, W.P.; Song, T.; Li, T.T.; Sun, Y.; et al. Air stagnation in China: Spatiotemporal variability and differing impact on PM2.5 and O3 during 2013–2018. Sci. Total Environ. 2022, 819, 152778. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.C.; He, J.; Zhu, H.S. Study on PM2.5 transport characteristics and pollution source in the winter of Chongqing. Environ Sci. Technol. 2018, 41, 134–141. (In Chinese) [Google Scholar]
- Zeng, Y.Y.; Cao, Y.F.; Qiao, X.; Seyler, B.C.; Tang, Y. Air pollution reduction in China: Recent success but great challenge for the future. Sci. Total Environ. 2019, 663, 329–337. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.L. Spatiotemporal variation of PM2.5 and its sources in the Yangtze River Delta urban agglomeration. Resour. Environ. Yangtze Basin 2023, 32, 1677–1685. (In Chinese) [Google Scholar]
- Zhang, L.; Shen, F.Z.; Gao, J.L.; Cui, S.J.; Yue, H.; Wang, J.F.; Chen, M.D.; Ge, X.L. Characteristics and potential sources of black carbon particles in suburban Nanjing, China. Atmos. Pollut. Res. 2020, 11, 981–991. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Zhang, L.; Lu, Y. Evaluating the methods and influencing factors of satellite-derived estimates of NOx emissions at regional scale: A case study for Yangtze River Delta, China. Atmos. Environ. 2019, 219, 117051. [Google Scholar] [CrossRef]
- Shen, L.J.; Diao, Y.W.; Zhao, T.L.; Gu, X.S.; Shi, S.S. Meteorological influence on persistent O3 pollution events in Wuxi in the Yangtze River Delta, China. Sci. Total Environ. 2024, 917, 170484. [Google Scholar] [CrossRef]
- Wang, Y.J.; Jiang, S.; Huang, L.; Lu, G.B.; Kasemsan, M.; Yaluk, E.A.; Liu, H.Q.; Liao, J.Q.; Bian, J.T.; Zhang, K.; et al. Differences between VOCs and NOx transport contributions, their impacts on O3, and implications for O3 pollution mitigation based on CMAQ simulation over the Yangtze River Delta, China. Sci. Total Environ. 2023, 872, 162118. [Google Scholar] [CrossRef]
- OPCPC-CSES. Blue Book on Prevention and Control of Atmospheric Ozone Pollution in China (2023); Science Press: Beijing, China, 2024; pp. 11–21. (In Chinese) [Google Scholar]
- Wu, L.X.; An, J.L. Quantitative impacts of meteorology and emissions on the long-term trend of O3 in the YRD, China from 2015 to 2022. J. Environ Sci. 2025, 149, 314–329. [Google Scholar] [CrossRef]
- Kang, Y.D.; Liu, X.C. Characteristics and potential source areas of ozone pollution in Pamir Plateau. Sci. Total Environ. 2025, 967, 178783. [Google Scholar]
- Lin, P. Urbanization effects on mammal richness: A case study of Yangtze River Delta urban agglomeration. Acta Sci. Nat. Univ. Pekin. 2021, 57, 565–574. (In Chinese) [Google Scholar]
- NBS of China. China Statistical Yearbook 2023; China Statistics Press: Beijing, China, 2023; pp. 1–6. (In Chinese) [Google Scholar]
- GB 3095-2012; Ambient Air Quality Standard. MEEC (Ministry of Ecology and Environment of China): Beijing, China, 2012. (In Chinese)
- Wang, J.Y.; Gao, A.F.; Li, S.R.; Liu, Y.H.; Zhao, W.F.; Wang, P.; Zhang, H.L. Regional joint PM2.5-O3 control policy benefits further air quality improvement and human health protection in Beijing-Tianjin-Hebei and its surrounding areas. J. Environ. Sci. 2023, 130, 75–84. [Google Scholar] [CrossRef]
- Phoenix, D.B.; Berkoff, T.A.; Gronoff, G.P.; Salkovitz, D.; Bernier, C.K.; Knowland, E.; Sullivan, J.T.; Twigg, L.W.; Roots, M.; Knepp, T. Analysis of atmospheric conditions responsible for an ozone exceedance event in southeast Virginia on June 15, 2022. Atmos. Pollut. Res. 2025, 16, 102409. [Google Scholar] [CrossRef]
- Wang, J.; Han, H.D.; Xu, J.L.; Yan, W. Chemical characteristics and their influencing factors of precipitation at the end of the Koxkar Glacier, Tianshan Mountains. Arid Zone Res. 2022, 39, 347–358. (In Chinese) [Google Scholar]
- Mao, W.; Lu, X.; Lu, Y.; Yang, K. Modeling supraglacial river networks on the Greenland ice sheet using the topographic index. Chin. J. Polar Res. 2021, 33, 351–362. (In Chinese) [Google Scholar]
- Mukherjee, S.; Mukherjee, S.; Garg, R.D.; Bhardwaj, A.; Raju, P. Evaluation of topographic index in relation to terrain roughness and DEM grid spacing. J. Earth Syst. Sci. 2013, 122, 869–876. [Google Scholar] [CrossRef]
- Jiang, L.; He, S.X.; Zhou, H.F. Spatio-temporal characteristics and convergence trends of PM2.5 pollution: A case study of cities of air pollution transmission channel in Beijing-Tianjin-Hebei region, China. J. Clean. Prod. 2020, 256, 120631. [Google Scholar] [CrossRef]
- Huang, M.Q.; Li, Y.B.; Li, M.Z.; Chen, S.; Zeng, C.C.; Zhang, B.; Xia, C.H. Coupling response of human activity intensity and Landscape pattern in the Three Gorges Reservoir area. Acta Ecol. Sin. 2022, 42, 3959–3973. (In Chinese) [Google Scholar] [CrossRef]
- Wang, S.; Feng, Y.P.; Cui, J.S.; Chen, J.; Yao, B.; Liu, D.X. Spatio-temporal evolution patterns and potential source areas of ozone pollution in Shijiazhuang. Acta Sci. Circumstantiae 2020, 40, 3081–3092. (In Chinese) [Google Scholar]
- Chen, H.Y.; Lu, X.; Wang, H.C.; Pei, C.L.; Qiu, X.N.; Gao, R.Q.; Wang, C.L.; Fan, S.J. Vertical distribution of ozone in spring based on two high tower observations over the Pearl River Delta, China. Atmos. Environ. 2024, 337, 120772. [Google Scholar] [CrossRef]
- Huang, X.G.; Shao, T.J.; Zhao, J.B.; Cao, J.J.; Song, Y.Y. Spatio-temporal differentiation of ozone concentration and its driving factors in Yangtze River Delta urban agglomeration. Res. Environ. Yangtze Basin 2019, 28, 1434–1445. (In Chinese) [Google Scholar]
- Miao, Y.C.; Che, H.Z.; Zhang, X.Y.; Liu, S.H. Relationship between summertime concurring PM2.5 and O3 pollution and boundary layer height differs between Beijing and Shanghai, China. Environ. Pollut. 2021, 268, 115775. [Google Scholar] [CrossRef]
- Xu, F.S.; Shen, J.L.; Gao, Z. A field measurement study of the effects of outdoor pollutants and room volumes on indoor fine particle and ozone concentrations. J. Build. Eng. 2023, 78, 107615. [Google Scholar] [CrossRef]
- Bai, L.Y.; Feng, J.Z.; Li, Z.W.; Han, C.M.; Yan, F.L.; Ding, Y.X. Spatiotemporal Dynamics of Surface Ozone and its relationship with Meteorological factors over the Beijing–Tianjin–Tangshan Region, China, from 2016 to 2019. Sensors 2022, 22, 4854. [Google Scholar] [CrossRef]
- Kanda, I.; Wakamatsu, S. Small-scale variations in ozone concentration in low mountains. Atmos. Environ. 2018, 184, 98–109. [Google Scholar] [CrossRef]
- Yoo, J.W.; Lee, S.H. Characteristics of local recirculation affecting summer ozone in coastal areas of the Korean Peninsula. Atmos. Res. 2025, 315, 107934. [Google Scholar] [CrossRef]
- Khadgi, J.; Kafle, K.; Thapa, G.; Khaitu, S.; Sarangi, C.; Cohen, D.; Kafle, H. Concentration of particulate matter and atmospheric pollutants in the residential area of Kathmandu Valley: A case study of March–April 2021 forest fire events. Environ. Pollut. 2024, 363, 125280. [Google Scholar] [CrossRef]
- Zhang, C.G.; Zhou, Y.J.; Yin, S.G. Interaction mechanisms of urban ecosystem resilience based on pressure-state-response framework: A case study of the Yangtze River Delta. Ecol. Indic. 2024, 166, 112263. [Google Scholar] [CrossRef]
- You, Y.C.; Wang, X.M.; Wu, Y.K.; Chen, W.H.; Chen, B.Y.; Chang, M. Quantified the influence of different synoptic weather patterns on the transport and local production processes of O3 events in Pearl River Delta, China. Sci. Total Environ. 2024, 912, 169066. [Google Scholar] [CrossRef]
- Zhao, D.D.; Xin, J.Y.; Wang, W.T.; Jia, D.J.; Wang, Z.F.; Xiao, H.; Liu, C.; Zhou, J.; Tong, L.; Ma, Y.J.; et al. Effects of the sea-land breeze on coastal ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 2022, 807, 150306. [Google Scholar] [CrossRef]
- Hong, J.W.; Lee, S.D.; Lee, K.M.; Hong, J. Seasonal variations in the surface energy and CO2 flux over a high-rise, high-population, residential urban area in the East Asian monsoon region. Int. J. Climatol. 2020, 40, 4384–4407. [Google Scholar] [CrossRef]
- Liu, B.S.; Wu, J.H.; Zhang, J.Y.; Wang, L.; Yang, J.M.; Liang, D.N.; Dai, Q.L.; Bi, X.H.; Feng, Y.C.; Zhang, Y.F.; et al. Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ. Pollut. 2017, 222, 10–22. [Google Scholar] [CrossRef]
- Liu, S.; Wang, G.; Kong, F.H.; Huang, Z.W.; Zhao, N.; Gao, W.K. Chemical composition, multiple sources, and health risks of PM2.5: A case study in Linyi, China’s plate and logistics capital. Environ. Pollut. 2025, 365, 125343. [Google Scholar] [CrossRef]
- Cao, H.J.; Wang, B.Z.; Li, K. Regulatory policy and misallocation: A new perspective based on the productivity effect of cleaner production standards in China’s energy firms. Energy Policy 2021, 152, 112231. [Google Scholar] [CrossRef]
- Yang, P.H.; Yang, Y. Innovation and application of inter-provincial carbon emission transfer accounting model in China’s domestic production network. Front. Environ. Sci. 2024, 12, 1426958. [Google Scholar] [CrossRef]
Period | Average | Maximum | Minimum |
---|---|---|---|
Spring | 1.14 ± 1.41 | 5.17 | −2.23 |
Summer | 0.82 ± 1.41 | 4.46 | −2.07 |
Autumn | 0.94 ± 1.12 | 3.51 | −2.21 |
Winter | 0.65 ± 0.83 | 3.20 | −2.18 |
Annual | 0.91 ± 0.98 | 3.63 | −1.45 |
Period | Proportion of the Number of Stations Exceeding the Concentration Threshold (%) | Average Number of Days Exceeding the Threshold (Days) | Maximum Number of Days Exceeding the Threshold (Days) |
---|---|---|---|
Spring | 99.6 | 13.18 | 35 |
Summer | 97.6 | 20.95 | 41 |
Autumn | 91.6 | 3.96 | 13 |
Winter | 0.4 | 0.008 | 1 |
Annual | 100 | 41.05 | 83 |
Control Factors | Independent Variable | Partial Correlation Coefficient | Significance Test |
---|---|---|---|
Relative humidity and wind speed | Temperature | 0.59 | Sig < 0.01 |
Temperature and wind speed | Relative humidity | −0.34 | Sig < 0.01 |
Temperature and relative humidity | Wind speed | −0.03 | Sig > 0.05 |
Source Paths | Path Proportion (%) | O3 Average Concentration (μg·m−3) | Proportion of Paths with Elevated Concentration (%) | Average Concentration of Elevated O3 Air Mass (μg·m−3) |
---|---|---|---|---|
R1 | 23 | 69.83 ± 37.64 | 3.2 | 181.38 ± 15.64 |
R2 | 27 | 81.23 ± 51.82 | 8.9 | 193.96 ± 28.07 |
R3 | 29 | 80.78 ± 47.67 | 7.4 | 188.66 ± 24.01 |
R4 | 21 | 55.93 ± 35.89 | 1.6 | 192.55 ± 24.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Wang, J. Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China. Atmosphere 2025, 16, 907. https://doi.org/10.3390/atmos16080907
Xu J, Wang J. Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China. Atmosphere. 2025; 16(8):907. https://doi.org/10.3390/atmos16080907
Chicago/Turabian StyleXu, Junli, and Jian Wang. 2025. "Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China" Atmosphere 16, no. 8: 907. https://doi.org/10.3390/atmos16080907
APA StyleXu, J., & Wang, J. (2025). Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China. Atmosphere, 16(8), 907. https://doi.org/10.3390/atmos16080907