Assessment of ERA5-Land Reanalysis Precipitation Data in the Qilian Mountains of China
Abstract
1. Introduction
2. Data and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, W.; Kang, S.; Qian, L.; Jiang, Y.; Sun, W.; Chen, J.; Xu, Z.; Sun, W.; Qin, X.; Chai, X. Spatiotemporal Variation of Snow Cover Frequency in the Qilian Mountains (Northwestern China) during 2000–2020 and Associated Circulation Mechanisms. Remote Sens. 2022, 14, 2823. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, N.; Shen, B.; Gu, Z.; Wu, Y.; Chen, A. Recent Spatiotemporal Trends in Glacier Snowline Altitude at the End of the Melt Season in the Qilian Mountains, China. Remote Sens. 2021, 13, 4935. [Google Scholar] [CrossRef]
- Wei, X.; Eboy, O.V.; Cao, G. Spatio-temporal variation of water conservation and its impact factors on the southern slope of Qilian Mountains. Reg. Sustain. 2023, 4, 54–67. [Google Scholar] [CrossRef]
- Zeng, J.; Xie, J.; Liu, R.; Mo, F.; Yang, X. Research on Glacier Elevation Variability in the Qilian Mountains of the Qinghai-Tibet Plateau Based on Topographic Correction by Pyramid Registration. Remote Sens. 2022, 15, 62. [Google Scholar] [CrossRef]
- Li, C.; Zou, Y.; He, J.; Zhang, W.; Gao, L.; Zhuang, D. Response of Vegetation Phenology to the Interaction of Temperature and Precipitation Changes in Qilian Mountains. Remote Sens. 2022, 14, 1248. [Google Scholar] [CrossRef]
- Li, Y.; Qin, X.; Jin, Z.; Liu, Y. Future Projection of Extreme Precipitation Indices over the Qilian Mountains under Global Warming. Int. J. Environ. Res. Public Health 2023, 20, 4961. [Google Scholar] [CrossRef]
- Qiao, C.; Shen, S.; Cheng, C.; Wu, J.; Jia, D.; Song, C. Vegetation Phenology in the Qilian Mountains and Its Response to Temperature from 1982 to 2014. Remote Sensing 2021, 13, 286. [Google Scholar] [CrossRef]
- Li, Y.; Qin, X.; Liu, Y.; Jin, Z.; Liu, J.; Wang, L.; Chen, J. Evaluation of Long-Term and High-Resolution Gridded Precipitation and Temperature Products in the Qilian Mountains, Qinghai–Tibet Plateau. Front. Environ. Sci. 2022, 10, 906821. [Google Scholar] [CrossRef]
- Qi, L.; Guo, Z.; Qi, Z.; Guo, J. Prospects of Precipitation Based on Reconstruction over the Last 2000 Years in the Qilian Mountains. Sustainability 2022, 14, 10615. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, W.; Kou, M.; Ma, Y. A Numerical Study of Critical Variables on Artificial Cold Cloud Precipitation Enhancement in the Qilian Mountains, China. Atmosphere 2023, 14, 1086. [Google Scholar] [CrossRef]
- Cui, X.; Xu, G.; He, X.; Luo, D. Influences of Seasonal Soil Moisture and Temperature on Vegetation Phenology in the Qilian Mountains. Remote Sens. 2022, 14, 3645. [Google Scholar] [CrossRef]
- Fang, T.Y.; Feng, L.; Yang, D.; Huang, Y.; Khaletski, V. Analysis of runoff characteristics and contribution rate in Xiying River Basin in the Eastern Qilian Mountains. E3S Web Conf. 2019, 136, 04014. [Google Scholar] [CrossRef]
- Lin, P.; He, Z.; Du, J.; Chen, L.; Zhu, X.; Li, J. Recent changes in daily climate extremes in an arid mountain region, a case study in northwestern China’s Qilian Mountains. Sci. Rep. 2017, 7, 2245. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; He, Z.; Ma, D.; Wang, W.; Qian, L. Temperature trends and its elevation-dependent warming over the Qilian Mountains. J. Mt. Sci. 2024, 21, 500–510. [Google Scholar] [CrossRef]
- Huai, B.; Wang, J.; Sun, W.; Wang, Y.; Zhang, W. Evaluation of the near-surface climate of the recent global atmospheric reanalysis for Qilian Mountains, Qinghai-Tibet Plateau. Atmos. Res. 2021, 250, 105401. [Google Scholar] [CrossRef]
- Chen, Y.; Sharma, S.; Zhou, X.; Yang, K.; Li, X.; Niu, X.; Hu, X.; Khadka, N. Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya. Atmos. Res. 2021, 250, 105365. [Google Scholar] [CrossRef]
- Gomis-Cebolla, J.; Rattayova, V.; Salazar-Galán, S.; Francés, F. Evaluation of ERA5 and ERA5-Land reanalysis precipitation datasets over Spain (1951–2020). Atmos. Res. 2023, 284, 106606. [Google Scholar] [CrossRef]
- Micić Ponjiger, T.; Lukić, T.; Wilby, R.L.; Marković, S.B.; Valjarević, A.; Dragićević, S.; Gavrilov, M.B.; Ponjiger, I.; Durlević, U.; Milanović, M.M.; et al. Evaluation of Rainfall Erosivity in the Western Balkans by Mapping and Clustering ERA5 Reanalysis Data. Atmosphere 2023, 14, 104. [Google Scholar] [CrossRef]
- Peng, Y.; Duan, A.; Zhang, C.; Tang, B.; Zhao, X. Evaluation of the surface air temperature over the Tibetan Plateau among different reanalysis datasets. Front. Environ. Sci. 2023, 11, 1152129. [Google Scholar] [CrossRef]
- Zhao, P.; He, Z.B. Evaluation of ERA5 reanalysis temperature data over the Qilian Mountains of China. J. Mt. Sci. 2025, 22, 198–209. [Google Scholar] [CrossRef]
- Zhao, P.; Gao, L.; Wei, J.; Ma, M.; Deng, H.; Gao, J.; Chen, X. Evaluation of ERA-Interim Air Temperature Data over the Qilian Mountains of China. Adv. Meteorol. 2020, 2020, 7353482. [Google Scholar] [CrossRef]
- Gao, L.; Hao, L.; Chen, X.-W. Evaluation of ERA-interim monthly temperature data over the Tibetan Plateau. J. Mt. Sci. 2014, 11, 1154–1168. [Google Scholar] [CrossRef]
- Zhao, P.; He, Z. A First Evaluation of ERA5-Land Reanalysis Temperature Product Over the Chinese Qilian Mountains. Front. Earth Sci. 2022, 10, 907730. [Google Scholar] [CrossRef]
- Araujo, C.S.P.; Silva, I.; Ippolito, M.; Almeida, C. Evaluation of air temperature estimated by ERA5-Land reanalysis using surface data in Pernambuco, Brazil. Environ. Monit. Assess. 2022, 194, 381. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Feng, H.; He, H.; Zhou, J.; Zhang, Y. Evaluation of Soil Moisture Climatology and Anomaly Components Derived From ERA5-Land and GLDAS-2.1 in China. Water Resour. Manag. 2021, 35, 629–643. [Google Scholar] [CrossRef]
- Zou, J.; Lu, N.; Jiang, H.; Qin, J.; Yao, L.; Xin, Y.; Su, F. Performance of air temperature from ERA5-Land reanalysis in coastal urban agglomeration of Southeast China. Sci. Total Environ. 2022, 828, 154459. [Google Scholar] [CrossRef]
- Cao, B.; Gruber, S.; Zheng, D.; Li, X. The ERA5-Land soil temperature bias in permafrost regions. Cryosphere 2020, 14, 2581–2595. [Google Scholar] [CrossRef]
- Liu, J.; Hagan, D.F.T.; Liu, Y. Global Land Surface Temperature Change (2003–2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land Based Analysis. Remote Sens. 2020, 13, 44. [Google Scholar] [CrossRef]
- Zhang, Y.; An, C.-B.; Liu, L.-Y.; Zhang, Y.-Z.; Lu, C.; Zhang, W.-S. High-elevation landforms are experiencing more remarkable wetting trends in arid Central Asia. Adv. Clim. Change Res. 2022, 13, 489–495. [Google Scholar] [CrossRef]
- Mihalevich, B.A.; Neilson, B.T.; Buahin, C.A. Evaluation of the ERA5-Land Reanalysis Data Set for Process-Based River Temperature Modeling Over Data Sparse and Topographically Complex Regions. Water Resour. Res. 2022, 58, e2021WR031294. [Google Scholar] [CrossRef]
- Guo, C.R.; Ning, N.; Guo, H. Does ERA5-Land Effectively Capture Extreme Precipitation in the Yellow River Basin? Atmosphere 2024, 15, 1254. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. Thépaut, ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, K.; Shao, C.; Zhou, X.; Zhao, L.; Chen, Y.; Wu, H. A downscaling approach for constructing high-resolution precipitation dataset over the Tibetan Plateau from ERA5 reanalysis. Atmos. Res. 2021, 256, 105574. [Google Scholar] [CrossRef]
- Jin, H.; Li, X.; Frauenfeld, O.W.; Zhao, Y.; Chen, C.; Du, R.; Du, J.; Peng, X. Comparisons of statistical downscaling methods for air temperature over the Qilian Mountains. Theor. Appl. Climatol. 2022, 149, 893–896. [Google Scholar] [CrossRef]
- Xu, Z.; Han, Y.; Tam, C.Y.; Yang, Z.L.; Fu, C. Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100). Sci. Data 2021, 8, 293. [Google Scholar] [CrossRef] [PubMed]
- Jiao, D.; Xu, N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci. Rep. 2021, 11, 17956. [Google Scholar] [CrossRef]
- Hu, X.; Yuan, W. Evaluation of ERA5 precipitation over the eastern periphery of the Tibetan plateau from the perspective of regional rainfall events. Int. J. Climatol. 2021, 41, 2625–2637. [Google Scholar] [CrossRef]
- Lei, X.; Xu, W.; Chen, S.; Yu, T.; Hu, Z.; Zhang, M.; Jiang, L.; Bao, R.; Guan, X.; Ma, M.; et al. How Well Does the ERA5 Reanalysis Capture the Extreme Climate Events Over China? Part I: Extreme Precipitation. Front. Environ. Sci. 2022, 10, 921658. [Google Scholar] [CrossRef]
No. | Bias (mm) | r | RMSE (mm) |
---|---|---|---|
1 | 1.67 | 0.793 | 3.10 |
2 | 1.51 | 0.843 | 2.96 |
3 | 2.00 | 0.854 | 3.72 |
4 | 1.41 | 0.852 | 4.16 |
5 | 4.32 | 0.890 | 6.13 |
6 | 0.61 | 0.852 | 3.26 |
7 | 10.00 | 0.896 | 13.15 |
8 | 1.42 | 0.759 | 6.03 |
9 | 1.37 | 0.751 | 2.07 |
10 | 3.75 | 0.937 | 5.74 |
11 | 7.71 | 0.948 | 10.60 |
12 | 9.20 | 0.947 | 12.03 |
13 | 0.91 | 0.830 | 2.53 |
14 | −1.28 | 0.879 | 4.08 |
15 | 1.67 | 0.793 | 3.10 |
16 | 6.23 | 0.911 | 9.76 |
17 | 6.11 | 0.895 | 8.65 |
Averaged | 3.45 | 0.861 | 5.95 |
No. | Bias (mm) | r | RMSE (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | |
1 | 1.98 | 1.44 | 1.96 | 1.27 | 0.865 | 0.759 | 0.862 | 0.339 | 2.27 | 2.46 | 2.32 | 1.44 |
2 | 1.31 | 2.23 | 1.68 | 0.82 | 0.785 | 0.673 | 0.869 | 0.328 | 1.68 | 3.13 | 2.00 | 1.03 |
3 | 1.50 | 3.75 | 1.82 | 0.94 | 0.784 | 0.619 | 0.842 | 0.493 | 1.83 | 4.47 | 2.22 | 1.04 |
4 | 1.62 | 2.01 | 1.48 | 0.55 | 0.683 | 0.699 | 0.717 | 0.620 | 2.22 | 3.72 | 2.57 | 0.67 |
5 | 4.17 | 6.24 | 5.11 | 1.77 | 0.713 | 0.721 | 0.863 | 0.448 | 4.47 | 7.02 | 5.42 | 1.88 |
6 | 0.00 | 1.14 | 0.99 | 0.31 | 0.777 | 0.560 | 0.744 | 0.391 | 1.00 | 3.74 | 1.78 | 0.52 |
7 | 10.03 | 14.67 | 12.69 | 2.61 | 0.722 | 0.503 | 0.673 | 0.403 | 10.26 | 16.12 | 13.01 | 2.71 |
8 | 0.44 | 1.19 | 3.00 | 1.04 | 0.523 | 0.523 | 0.359 | 0.392 | 2.49 | 5.61 | 4.38 | 1.14 |
9 | 1.41 | 2.76 | 0.72 | 0.57 | 0.482 | 0.521 | 0.783 | 0.489 | 1.54 | 3.01 | 0.92 | 0.61 |
10 | 4.25 | 5.89 | 3.30 | 1.55 | 0.601 | 0.487 | 0.778 | 0.462 | 4.50 | 7.32 | 3.63 | 1.59 |
11 | 6.63 | 15.61 | 6.44 | 2.15 | 0.378 | 0.760 | 0.799 | 0.421 | 7.06 | 16.04 | 6.74 | 2.19 |
12 | 7.76 | 17.98 | 8.20 | 2.89 | 0.559 | 0.580 | 0.786 | 0.565 | 7.99 | 18.59 | 8.48 | 2.93 |
13 | 1.32 | 1.15 | 0.57 | 0.58 | 0.794 | 0.627 | 0.607 | 0.474 | 1.65 | 2.56 | 1.15 | 0.72 |
14 | −0.89 | −3.12 | −0.97 | −0.15 | 0.717 | 0.707 | 0.754 | 0.654 | 2.02 | 4.37 | 1.70 | 0.47 |
15 | 3.98 | 5.11 | 4.96 | 1.20 | 0.604 | 0.424 | 0.620 | 0.585 | 4.45 | 7.32 | 5.46 | 1.29 |
16 | 3.22 | 12.88 | 6.25 | 2.57 | 0.503 | 0.389 | 0.636 | 0.437 | 4.39 | 14.11 | 7.01 | 2.64 |
17 | 4.90 | 8.64 | 8.69 | 2.21 | 0.776 | 0.834 | 0.629 | 0.671 | 5.51 | 9.76 | 9.32 | 2.32 |
Averaged | 3.15 | 5.86 | 3.93 | 1.35 | 0.663 | 0.611 | 0.725 | 0.481 | 3.84 | 7.61 | 4.59 | 1.48 |
No. | Bias (mm) | r | RMSE (mm) |
---|---|---|---|
1 | 1.67 | 0.741 | 1.80 |
2 | 1.51 | 0.759 | 1.63 |
3 | 2.00 | 0.675 | 2.15 |
4 | 1.41 | 0.630 | 1.78 |
5 | 4.32 | 0.631 | 4.47 |
6 | 0.61 | 0.589 | 1.14 |
7 | 10.00 | 0.452 | 10.20 |
8 | 1.42 | 0.398 | 2.21 |
9 | 1.37 | 0.564 | 1.42 |
10 | 3.75 | 0.632 | 3.95 |
11 | 7.71 | 0.690 | 7.84 |
12 | 9.20 | 0.576 | 9.32 |
13 | 0.91 | 0.721 | 1.13 |
14 | −1.28 | 0.677 | 1.66 |
15 | 3.81 | 0.564 | 4.13 |
16 | 6.23 | 0.575 | 6.45 |
17 | 6.11 | 0.777 | 6.28 |
Average | 3.57 | 0.627 | 3.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, L.; Zhao, P. Assessment of ERA5-Land Reanalysis Precipitation Data in the Qilian Mountains of China. Atmosphere 2025, 16, 826. https://doi.org/10.3390/atmos16070826
Qian L, Zhao P. Assessment of ERA5-Land Reanalysis Precipitation Data in the Qilian Mountains of China. Atmosphere. 2025; 16(7):826. https://doi.org/10.3390/atmos16070826
Chicago/Turabian StyleQian, Lihui, and Peng Zhao. 2025. "Assessment of ERA5-Land Reanalysis Precipitation Data in the Qilian Mountains of China" Atmosphere 16, no. 7: 826. https://doi.org/10.3390/atmos16070826
APA StyleQian, L., & Zhao, P. (2025). Assessment of ERA5-Land Reanalysis Precipitation Data in the Qilian Mountains of China. Atmosphere, 16(7), 826. https://doi.org/10.3390/atmos16070826