Erosive Wind Characteristics and Aeolian Sediment Transport and Dune Formation in Makran Region of Baluchistan, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
C = ∑(VU) Sin(θ)
D = ∑(VU) Cos(θ)
3. Results and Discussion
3.1. Wind Velocity
3.2. Wind Direction
- (I)
- The Shamal wind with northwestern and western directions in winter was a salient feature of the surface wind peaking in December and February [63];
- (II)
- (III)
- (IV)
3.3. Erosive Wind Characteristics and Sand Transport
3.3.1. Spatial Variations
3.3.2. Temporal Variations
3.4. Sand Dune Geomorphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DP | Drift Potential |
RDP | Resultant drift potential |
RDD | Resultant drift direction |
UDI | Unidirectional index |
SDS | Sand and dust storms |
IMO | Iranian meteorological organization |
References
- Lancaster, N. Geomorphology of Desert Dunes; Routledge: London, UK, 1995; p. 312. [Google Scholar] [CrossRef]
- Thomas, D.S.G. Desert dune activity: Concepts and significance. J. Arid Environ. 1992, 22, 31–38. [Google Scholar] [CrossRef]
- Fryberger, S.G.; Dena, G. Dune forms and wind regime. In A Study of Global Sand Seas; McKee, E.D., Ed.; U.S. Government Printing Office: Washington, DC, USA, 1979; pp. 37–169. [Google Scholar]
- Opp, C.; Groll, M.; Abbasi, H.; Foroushani, M.A. Causes and Effects of Sand and Dust Storms: What Has Past Research Taught Us? A Survey. J. Risk Financ. Manag. 2021, 14, 326. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Methuen: London, UK, 1941; p. 265. [Google Scholar]
- Shao, Y. Physics and Modelling of Wind Erosion. In Atmospheric and Oceanographic Sciences Library; Springer: Dordrecht, The Nederlands, 2008; Volume 37. [Google Scholar] [CrossRef]
- Gelbart, G.; Katra, I. Dependence of the Dust Emission on the Aggregate Sizes in Loess Soils. Appl. Sci. 2020, 10, 5410. [Google Scholar] [CrossRef]
- Hesp, P.A. Foredunes and Blowouts: A Review of Their Formation, Development, and Management. Geo. Rev. 2002, 92, 233–252. [Google Scholar] [CrossRef]
- Pye, K.; Tsoar, H. Aeolian Sand and Sand Dunes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; pp. 9–50. [Google Scholar] [CrossRef]
- Livingstone, I.; Warren, A. Aeolian Geomorphology: An Introduction; Longman: Harlow, UK, 1996; ISBN 058208704X. Available online: http://nectar.northampton.ac.uk/id/eprint/5691 (accessed on 7 May 2024).
- Belly, P.Y. Sand Movement by Wind; U.S. Army Corps of Engineers, Coastal Engineering Research Center: Washington, DC, USA, 1964; p. 80. [Google Scholar]
- Nickling, W.G.; Wolfe, S.A. The morphology and origin of nebkhas, region of Mopti, Mali, West Africa. J. Arid Environ. 1994, 28, 13–30. [Google Scholar] [CrossRef]
- Bullard, J.E. A note on the use of the “Fryberger method” for evaluating potential sand transport by wind. J. Sed. Res. 1997, 67, 499–501. [Google Scholar] [CrossRef]
- Levin, N.; Neil, D.; Syktus, J. Spatial variability of dune form on Moreton Island, Australia, and its correspondence with wind regime derived from observing stations and reanalysis. Aeolian Res. J. 2014, 14, 289–300. [Google Scholar] [CrossRef]
- Muhs, D.R.; Reynolds, R.L.; Been, J.; Skipp, G. Eolian sand Transport Pathways in the Southwestern United States: Importance of the Colorado River and Local Sources; USGS: Reston, VA, USA, 2003; p. 171. Available online: http://digitalcommons.unl.edu/usgsstaffpub/171 (accessed on 14 May 2025).
- Tchakerian, V.P.; Lancaster, N. Late Quaternary arid/humid cycles in the Mojave desert and western Great Basin of North America. Quat. Sci. Rev. 2002, 21, 799–810. [Google Scholar] [CrossRef]
- Lancaster, N. Formation and reactivation of dunes in the southwestern Kalahari: Palaeoclimatic implications. In Palaeoecology of Africa and the Surrounding Islands; A.A. Balkema: Rotterdam, The Netherlands, 1987; Volume 18, pp. 103–110. [Google Scholar]
- Jewell, P.W.; Kathleen, N. Wind regimes and aeolian transport in the Great Basin, U.S.A. Geomorphology 2011, 129, 1–13. [Google Scholar] [CrossRef]
- Zhang, K.C.; Qu, J.J.; An, Z.S. Characteristics of wind-blown sand and near surface wind regime in the Tengger Desert, China. Aeolian Res. J. 2012, 6, 83–88. [Google Scholar] [CrossRef]
- Zhao, H.; Feng, S.; Dang, X.; Meng, Z.; Chen, Z.; Gao, Y. Wind regime and sand transport in the mid-course of ten tributaries of the Yellow River, Inner Mongolia of China. Front. Environ. Sci. 2023, 11, 1233922. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Qu, Z.Q.; Shi, P.J.; Liu, L.Y.; Zhang, G.M.; Tang, Y.; Hu, X.; Lv, Y.L.; Xiong, Y.Y.; Wang, J.P.; et al. Wind regime and sand transport in the corridor between the Badain Jaran and Tengger deserts, central Alxa Plateau, China. Aeolian Res. 2014, 12, 143–156. [Google Scholar] [CrossRef]
- Yang, H.; Cao, J.; Hou, X. Characteristics of Aeolian Dune, Wind Regime and Sand Transport in Hobq Desert, China. Appl. Sci. 2019, 9, 5543. [Google Scholar] [CrossRef]
- Zu, R.P.; Zhang, K.C.; Qu, J.J.; Fang, H.Y. Study on wind regime characteristics in the Taklimakan Desert. Arid Geogr. 2005, 28, 167–170. [Google Scholar]
- Wang, X.M.; Dong, Z.B.; Yan, P.; Zhang, J.W.; Qian, G.Q. Wind energy environments and dunefield activity in the Chinese deserts. Geomorphology 2005, 65, 33–48. [Google Scholar] [CrossRef]
- Wang, X.M.; Hasi, E.; Zhou, Z.J.; Liu, X.P. Significance of variations in the wind energy environment over the past 50 years with respect to dune activity and desertification in arid and semiarid northern China. Geomorphology 2007, 86, 252–266. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, D.; Xu, G.; Dong, F.; Tuo, W. Characteristics of Sand-Driving Wind Regime and Sand Drift Potential in Sandy Areas on Both Sides of Longyangxia Reservoir in China. Int. J. Environ. Monit. Anal. 2004, 12, 74–87. [Google Scholar] [CrossRef]
- Livingstone, I.; Bristow, C.; Bryant, R.G.; Bullard, J.; White, K.; Wiggs, G.; Baas, A.C.W.; Bateman, M.D.; Thomas, D.S.G. The Namib Sand Sea digital database of aeolian dunes and key forcing variables. Aeolian Res. 2010, 2, 93–104. [Google Scholar] [CrossRef]
- Hereher, M.E. Geomorphology and drift potential of major aeolian sand deposits in Egypt. Geomorphology 2018, 304, 113–120. [Google Scholar] [CrossRef]
- Al-Awadhi, J.M.; Al-Helal, A.; Al-Enezi, A. Sand drift potential in the desert of Kuwait. J. Arid Environ. 2005, 63, 425–438. [Google Scholar] [CrossRef]
- Tsoar, H. Sand dunes mobility and stability in relation to climate. Phys. A Stat. Mech. Its Appl. 2005, 357, 50–56. [Google Scholar] [CrossRef]
- Yizhaq, H.; Ashkenazy, Y.; Tsoar, H. Why do active and stabilized dunes coexist under the same climatic conditions? Phys. Rev. Lett. 2007, 98, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Yizhaq, H.; Ashkenazy, Y.; Tsoar, H. Sand dune dynamics and climate change: A modeling approach. J. Geophys. Res. Earth Surf. 2009, 114, F01023. [Google Scholar] [CrossRef]
- Tsoar, H.; Levin, N.; Porat, N.; Maia, L.P.; Herrmann, H.J.; Tatumi, S.H.; Claudino-Sales, V. The effect of climate change on the mobility and stability of coastal sand dunes in Ceará State (NE Brazil). Quat. Res. 2009, 71, 217–226. [Google Scholar] [CrossRef]
- Tsoar, H. Critical environments: Sand dunes and climate change. In Treatise on Geomorphology; Shroder, J., Lancaster, N., Sherman, D.J., Baas, A.C.W., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 11, pp. 414–427. [Google Scholar] [CrossRef]
- Abbasi, H.R.; Opp, C.; Groll, M.; Rohipour, H.; Gohardoust, A. Assessment of the distribution and activity of dunes in Iran based on mobility indices and ground data. Aeolian Res. 2019, 41, 100539. [Google Scholar] [CrossRef]
- Abbasi, H.R.; Opp, C.; Groll, M.; Gohardoust, A.; Rohipour, H. Wind regime and aeolian sand transport in Khuzestan Sand Sea. Aeolian Res. 2021, 53, 100746. [Google Scholar] [CrossRef]
- Abassi, H.R.; Kashki, M.T.; Rahdari, M.R.; Gohardoust, A.; Lotfi Nasab Asl, S. The Features of Wind’s Regime and Sand Transport Potential in Sarakhs Erg. Iran. J. Range Desert Res. 2020, 27, 371–384. (In Persian) [Google Scholar] [CrossRef]
- Abbasi, H.R.; Opp, C.; Groll, M.; Gohardoust, A. Wind regime and sand transport in the Sistan and Registan regions (Iran/Afghanistan). Z. Für Geomorphol. 2019, 62 (Suppl. S1), 41–67. [Google Scholar] [CrossRef]
- Ahmadi, H.; Mesbahzadeh, T. Comparison of sand drifts potential estimating using momentum method and Fryberger velocity classes’ method (Case study: Jask and Kerman). Water Soil 2011, 25, 11–18. (In Persian) [Google Scholar] [CrossRef]
- Ekhtesasi, M.R.; Dadfar, S. Investigation on Relationship between Coastal Hurricanes and Sand Dunes Morphology in South of Iran. Phys. Geogr. Res. Q. 2014, 45, 61–72. [Google Scholar] [CrossRef]
- Fatahi, Y.; Nazari Samani, A.; Abbasi, H.R.; Ahmadi, H. A comparative study of wind directions and sand dunes morphology of Jen Erg. Res. Earth Sci. 2017, 8, 1–17. (In Persian) [Google Scholar]
- Kharazmi, R.; Abbasi, H.R.; Moradi Sani, S.; Khaksarian, F. Identification of Active Dust Source Areas Using Field and Remote Sensing Methods for Determining Wind Erosion Threshold Velocity (Case Study: Eastern Kerman Province). Iran. J. For. Range Prot. Res. 2023, 21, 55–75. (In Persian) [Google Scholar] [CrossRef]
- Nazari Samani, A.A.; Biabani, L.; Abbasi, H.R.; Khosravi, H. Effects of wind erosivity and sand drift on the littoral area of Urmia Lake and sand mobility. Iran. J. Range Desert Res. 2018, 25, 594–612. (In Persian) [Google Scholar] [CrossRef]
- Nazari Samani, A.A.; Khosravi, H.; Mesbahzadeh, T.; Azarakhshi, M.; Rahdari, M.R. Determination of sand dune characteristics through geomorphometry and wind data analysis in central Iran (Kashan Erg). Arab. J. Geosci. 2016, 9, 716. [Google Scholar] [CrossRef]
- Nazari Samani, A.A.; Rahdari, M.R.; Rahi, G. Assessment of Spatial variabilities of Soil Erodibility by Wind on Margial lands of the Lake Urmia. Desert Manag. 2020, 8, 53–72. (In Persian) [Google Scholar] [CrossRef]
- Poormand, S.; Gholamalizadeh Ahangar, A.; Dehvari, A. Sand Drift Potential by Wind in Shileh Plain of Sistan. Water Soil 2015, 29, 139–150. [Google Scholar] [CrossRef]
- Rahdari, M.R.; Kharazmi, R. Spatial-Temporal Assessment of Dust Events and Trend Analysis of Sand Drift Potential in Northeastern Iran, Gonabad. Land 2024, 13, 1906. [Google Scholar] [CrossRef]
- Rahdari, M.R.; Caballero-Calvo, A.; Kharazmi, R.; Rodrigo-Comino, J. Evaluating temporal sand drift potential trends in the Sistan region, Southeast Iran. Environ. Sci. Pollut. Res. 2023, 30, 120266–120283. [Google Scholar] [CrossRef]
- Rahdari, M.R.; Gyasi-Agyei, Y.; Rodrigo-Comino, J. Sand drift potential impacts within desert railway corridors: A case study of the Sarakhs-Mashhad railway line. Arab. J. Geosci. 2021, 14, 810. [Google Scholar] [CrossRef]
- Rahdari, M.R.; Rodríguez-Seijo, A. Monitoring Sand Drift Potential and Sand Dune Mobility over the Last Three Decades (Khartouran Erg, Sabzevar, NE Iran). Sustainability 2021, 13, 9050. [Google Scholar] [CrossRef]
- Sadid, N. Sand dune migration and flux into the lower Helmand and Arghandab valleys. Sedimentologika 2024, 2, 1–22. [Google Scholar] [CrossRef]
- Middleton, N.; Al-Hemoud, A. Sand and Dust Storms: Recent Developments in Impact Mitigation. Sustainability 2024, 16, 7121. [Google Scholar] [CrossRef]
- Darvishi Boloorani, A.; Soleimani, M.; Neysani Samany, N.; Bakhtiari, M.; Qareqani, M.; Papi, R.; Mirzaei, S. Assessment of Rural Vulnerability to Sand and Dust Storms in Iran. Atmosphere 2023, 14, 281. [Google Scholar] [CrossRef]
- Seyed Akhlagi, S.J.; Banj Shafie, S.H. Investigating the Socio-Economic Issues of Dust Sources in Khuzestan/Iran; Technical Report; Research Institute Forests and Ranglands: Tehran, Iran, 2020; 164p. (In persian) [Google Scholar]
- Yarmoradi, Z.; Nasiri, B.; Mohammadi, G.H.; Karampour, M. Long-term characteristics of the observed dusty days and its relationship with climatic parameters in East Iran. Arab J. Geosci. 2020, 13, 242. [Google Scholar] [CrossRef]
- Gharib Reza, M.; Motamed, A. A study of changes in coastal sand dunes of Sistan and Baluchistan province from 1967 to 1993. Geophys. Res. Quart. 2004, 36, 35–47. (In Persian) [Google Scholar]
- Saket, A.; Etemad-Shahidi, A. Wave energy potential along the northern coasts of the Gulf of Oman, Iran. Renew. Energy 2012, 40, 90–97. [Google Scholar] [CrossRef]
- Khosravi, M.; Fotohi, S.; Pirouzzadeh, S. A Survey on Spatial–temporal Changes of Coastal Sand Dunes Using Remote Sensing (RS). Case Study: West of Zarabad Region. J. Spat. Anal. Environ. Hazards 2016, 2, 1–14. (In Persian) [Google Scholar] [CrossRef]
- Burg, J.-P.; Bernoulli, D.; Smit, J.; Dolati, A.; Bahroudi, A. A giant catastrophic mud-and-debris flow in the Miocene Makran. Terra Nova 2008, 20, 188–193. [Google Scholar] [CrossRef]
- Sinaei, M.; Talebi-matin, M.; Bolouki, M.; Shojaei, M.; Salehzehi, F. The study of egg laying habitats and the success rate of green sea turtles (Chelonia mydas) nesting in the northern coast of Makoran (Sistan and Baluchestan province). J. Oceanogr. 2020, 11, 9–15. [Google Scholar] [CrossRef]
- Ekhtesasi, M.R.; Saremi Naeini, M.A.; Saremi Naeini, A. Design of sand rose graph software, the processor of soil erosion power and sediment. In Proceedings of the First National Conference of Wind Erosion, Yazd, Iran, 24–26 January 2006. (In Persian). [Google Scholar]
- Baghbanan, P.; Ghavidel, Y.; Farajzadeh, M. Temporal long-term variations in the occurrence of dust storm days in Iran. Meteorol. Atmos. Phys. 2020, 132, 885–898. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Mofidi, A.; Minvielle, F.; Chiapello, A.; Legrand, M.; Dumka, U.C.; Francois, P. Effects of Monsoon, Shamal and Levar winds on dust accumulation over the Arabian Sea during summer—The July 2016 case. Aeolian Res. 2019, 36, 27–44. [Google Scholar] [CrossRef]
- Bordbar, M.H.; Nasrolahi, A.; Lorenz, M.; Moghaddam, S.; Burchard, H. The Persian Gulf and Oman Sea: Climate variability and trends inferred from satellite observations. Estuar. Coast. Shelf Sci. 2024, 296, 108588. [Google Scholar] [CrossRef]
- Ghazi Mirsaeid, M.; Mehdizadeh, M.M.; Bannazadeh, M.R. The Trend of Changes in Surface Wind in the Indian Ocean, in the Period from 1981 to 2015, Using Reanalysis Data, NCEP/NCAR. Open J. Mar. Sci. 2017, 7, 445–457. [Google Scholar] [CrossRef]
- Schott, F.A.; McCreary, J.P. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 2001, 51, 1–123. [Google Scholar] [CrossRef]
- Chaichitehrani, N.; Allahdadi, M.N. Overview of wind climatology for the Gulf of Oman and the northern Arabian Sea. Am. J. Fluid Dyn. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Abadi, A.R.S.; Alam, K.; Shukurov, K.A.; Opp, C. Long-Term Wind and Air Temperature Patterns in the Southeastern Region of Iran through Model Simulation and Ground Observations. Atmosphere 2024, 15, 993. [Google Scholar] [CrossRef]
- Hamidianpour, M.; Amir Jahanshahi, S.M.; Kaskaoutis, D.G.; Rashki, A.R.; Nastos, P.G. Climatology of the Sistan Levar wind: Atmospheric dynamics driving its onset, duration and withdrawal. Atmo. Res. 2021, 260, 105711. [Google Scholar] [CrossRef]
- McKee, E.D. A Study of Global Sand Seas; Professional Paper; U.S. Government Printing Office: Reston, VA, USA, 1979; p. 429. [Google Scholar] [CrossRef]
- Goudie, A.S. Aeolian Processes and Landforms, the History of the Study of Landforms or the Development of Geomorphology: Volume 5: Geomorphology in the Second Half of the Twentieth Century; Burt, T.P., Goudie, A.S., Viles, H.A., Eds.; Geological Society Publications: London, UK, 2022. [Google Scholar] [CrossRef]
- Abbasi, M.; Feiznia, S.; Ahmadi, H.; Kazmei, Y. Study of sand dunes origin by geochemical trades of eolian sediment in Niatak. J. Arid Biome 2010, 1, 34–44. (In Persian) [Google Scholar] [CrossRef]
- Ahrari, M. Investigation of formation and extension of sand dunes in order to assessment of their effects on the Geomorphology of coastal environment of the Oman Sea. Quant. Geomorphol. Res. 2018, 6, 163–175. (In Persian) [Google Scholar]
- Baas, A.; Delobel, L. Desert dunes transformed by end-of-century changes in wind climate. Nat. Clim. Change 2022, 12, 999–1006. [Google Scholar] [CrossRef]
DP (Vector Unit) | Wind Energy Environment | RDP/DP | Directional Variability | Directional Category (Probability Distribution) |
---|---|---|---|---|
<200 | Low | <0.3 | High | Complex or obtuse bimodal |
200–400 | Intermediate | 0.3–0.8 | Intermediate | Obtuse to acute bimodal |
>400 | High | >0.8 | Low | Wide to narrow unimodal |
Stations | Duration | Records | Calm % |
---|---|---|---|
Chabahar | 2022–1994 | 161,453 | 33 |
Konarak | 2022–1994 | 158,564 | 31 |
Rask * | 2013–2006 | 51,348 | 17 |
Nik-shahr * | 2013–2006 | 51,263 | 18 |
Bahookalat * | 1996–1986 | 62,245 | 15 |
Station | Parameters Wind Velocity Upper 6 (m/s) | Annual Mean Wind Velocity (m/s) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | ±SD | Prevailing Wind | Max | Min | Mean | ±SD | Prevailing Wind | |||
Direction | Freq. % | Direction | Freq. % | |||||||
Chabahar | 9 | 3.74 | Southeast | 41 | 16 | 0 | 3.8 | 3.56 | Southeast | 15 |
Konarak | 7 | 1.5 | Southeast | 60 | 20 | 0 | 3.1 | 2.97 | Southeast | 11 |
Direction | Yearly | Spring | Summer | Fall | Winter |
---|---|---|---|---|---|
North | 2.0 | 0.85 | 0.46 | 5.77 | 5.19 |
Northeast | 5.2 | 3.08 | 3.81 | 10.36 | 9.62 |
East | 8.5 | 7.14 | 15.99 | 6.20 | 6.06 |
Southeast | 13.1 | 14.58 | 31.87 | 6.91 | 8.04 |
South | 12.5 | 14.01 | 21.96 | 10.01 | 8.09 |
Southwest | 12.5 | 16.74 | 7.8 | 14.74 | 14.84 |
West | 8.1 | 14.8 | 2.65 | 12.94 | 17.76 |
Northwest | 3.5 | 4.6 | 0.58 | 8.12 | 9.65 |
Calm Wind | 34.6 | 26.3 | 14.87 | 24.94 | 20.75 |
Stations | Duration | DP (VU) | RDP | RDD° | RDP/DP | Wind Energy Environment |
---|---|---|---|---|---|---|
Chabahar | 1994–2022 | 111 | 47 | 12 | 0.4 | Low |
Konarak | 1994–2022 | 180 | 104 | 14 | 0.6 | Low |
Rask * | 2006–2013 | 31 | 14 | 61 | 0.5 | Low |
Nik-shahr * | 2006–2013 | 55 | 29 | 82 | 0.5 | Low |
Bahookalat * | 1986–1996 | 194 | 109 | 51 | 0.5 | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, H.; Gohardoust, A.; Mohammadpour, F.; Khosroshahi, M.; Groll, M.; Opp, C. Erosive Wind Characteristics and Aeolian Sediment Transport and Dune Formation in Makran Region of Baluchistan, Iran. Atmosphere 2025, 16, 650. https://doi.org/10.3390/atmos16060650
Abbasi H, Gohardoust A, Mohammadpour F, Khosroshahi M, Groll M, Opp C. Erosive Wind Characteristics and Aeolian Sediment Transport and Dune Formation in Makran Region of Baluchistan, Iran. Atmosphere. 2025; 16(6):650. https://doi.org/10.3390/atmos16060650
Chicago/Turabian StyleAbbasi, Hamidreza, Azadeh Gohardoust, Fazeh Mohammadpour, Mohammad Khosroshahi, Michael Groll, and Christian Opp. 2025. "Erosive Wind Characteristics and Aeolian Sediment Transport and Dune Formation in Makran Region of Baluchistan, Iran" Atmosphere 16, no. 6: 650. https://doi.org/10.3390/atmos16060650
APA StyleAbbasi, H., Gohardoust, A., Mohammadpour, F., Khosroshahi, M., Groll, M., & Opp, C. (2025). Erosive Wind Characteristics and Aeolian Sediment Transport and Dune Formation in Makran Region of Baluchistan, Iran. Atmosphere, 16(6), 650. https://doi.org/10.3390/atmos16060650