A Short-Term Prediction Method for Tropospheric Delay Products in PPP-RTK Based on Multi-Scale Sliding Window LSTM
Abstract
:1. Introduction
2. Methods
2.1. PPP-RTK
2.2. LSTM
2.3. Multi-Scale Sliding Window LSTM
3. Data and Calculation Strategy
4. Results and Discussion
4.1. Tropospheric Delay Raw Product
4.2. Multi-Scale Sliding Window LSTM Prediction
4.3. PPP-RTK Experiment with Short-Term Forecast Tropospheric Products
4.4. Discussion of Experimental Results
5. Conclusions
- To address the short-term prediction challenge of PPP-RTK tropospheric delay products, this paper proposes the MSSW-LSTM method. The proposed methodology leverages a multi-scale sliding window strategy to generate diverse temporal subsets, enabling the effective extraction of multi-scale features and facilitating the discovery of intricate patterns within the data. Furthermore, the incorporation of LSTM architecture addresses the inherent limitations of traditional methods by effectively mitigating the gradient vanishing problem during parameter optimization, thereby enhancing the model’s learning capability and prediction stability.
- To rigorously validate the algorithm’s effectiveness and generalizability, an extensive experimental evaluation was conducted using observation data from the Hong Kong CORS network spanning 1–7 December 2024. The experimental results demonstrate significant performance improvements, with the MSSW-LSTM method achieving average RMSE reductions of 18.9% and 36.6% compared to conventional LSTM when evaluated against ground truth measurements and raw tropospheric delay products, respectively. Notably, the maximum prediction error remains below 1.5 cm, well within the stringent accuracy requirements for PPP-RTK tropospheric delay products.
- Subsequent PPP-RTK positioning experiments utilizing the predicted products further substantiate the method’s superiority. Weekly statistical analyses reveal consistent performance enhancements across all coordinate components, with average RMS improvements of 10.7%, 19.1%, and 4.1% in the east, north, and up directions, respectively, compared to results obtained using traditional LSTM predictions. These comprehensive experimental findings not only validate the effectiveness and superiority of the MSSW-LSTM approach but also establish its practical viability as a reliable solution for short-term tropospheric delay prediction in PPP-RTK applications. The method’s demonstrated capability to enhance both prediction accuracy and positioning performance positions it as a valuable tool for advancing the state of the art in precise positioning technologies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, L.; Wang, Y.; Bi, H.; Zhu, G.; Liu, L.; Jiang, W. Initial results of atmospheric weighted mean temperature estimation with Pangu-Weather in real-time GNSS PWV retrieval for China. GPS Solut. 2025, 29, 48. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, W.; Wang, J.; Wang, D.; Fan, W.; He, M. Detecting the extreme hydrological events over China in 2022 using sparse GNSS and GRACE/GRACE-FO. Remote Sens. Environ. 2024, 315, 114488. [Google Scholar] [CrossRef]
- He, J.; Li, Z.; He, L.; Wang, J.; Jiang, W. Long-term spatiotemporal features of aerosol optical characteristics and relative humidity in China’s offshore areas. Geo-Spat. Inf. Sci. 2025, 1–18. [Google Scholar] [CrossRef]
- He, L.; Ju, B.; Jiang, W.; Fan, W.; Yuan, P.; Hu, J.; Chen, Q. A multimodal natural frequency identification method of long-span bridges using GNSS. Meas. Sci. Technol. 2023, 34, 105122. [Google Scholar] [CrossRef]
- Guo, J.; Li, X.; Li, Z.; Hu, L.; Yang, G.; Zhao, C.; Fairbairn, D.; Watson, D.; Ge, M. Multi-GNSS precise point positioning for precision agriculture. Precis. Agric. 2018, 19, 895–911. [Google Scholar] [CrossRef]
- An, X.; Ziebold, R.; Lass, C. From RTK to PPP-RTK: Towards real-time kinematic precise point positioning to support autonomous driving of inland waterway vessels. GPS Solut. 2023, 27, 86. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Khaikin, V.B.; Kiselev, A.V. Precipitable Water Vapor and Fractional Clear Sky Statistics within the Big Telescope Alt-Azimuthal Region. Remote Sens. 2022, 14, 6221. [Google Scholar] [CrossRef]
- Khaikin, V.B.; Shikhovtsev, A.Y.; Mironov, A.P. Statistics of precipitable water vapour, optical thickness and cloud cover within the Northern part of Eurasia. Astron. Žurnal 2024, 101, 195–206. [Google Scholar] [CrossRef]
- Hu, G.; Khoo, H.; Goh, P.; Law, C. Development and assessment of GPS virtual reference stations for RTK positioning. J. Geodesy 2003, 77, 292–302. [Google Scholar] [CrossRef]
- Wielgosz, P.; Kashani, I.; Grejner-Brzezinska, D. Analysis of long-range network RTK during a severe ionospheric storm. J. Geodesy 2005, 79, 524–531. [Google Scholar] [CrossRef]
- Ge, M.; Gendt, G.; Rothacher, M.; Shi, C.; Liu, J. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J. Geodesy 2008, 82, 389–399. [Google Scholar] [CrossRef]
- Geng, J.; Wen, Q.; Zhang, Q.; Li, G.; Zhang, K. GNSS observable-specific phase biases for all-frequency PPP ambiguity resolution. J. Geodesy 2022, 96, 11. [Google Scholar] [CrossRef]
- Khodabandeh, A.; Teunissen, P.J.G. An analytical study of PPP-RTK corrections: Precision, correlation and user-impact. J. Geodesy 2015, 89, 1109–1132. [Google Scholar] [CrossRef]
- Teunissen, P.J.G.; Khodabandeh, A. Review and principles of PPP-RTK methods. J. Geodesy 2014, 89, 217–240. [Google Scholar] [CrossRef]
- Teunissen, P.J.G.; Khodabandeh, A. PPP–RTK theory for varying transmitter frequencies with satellite and terrestrial positioning applications. J. Geodesy 2022, 96, 84. [Google Scholar] [CrossRef]
- Wang, F.; Geng, J. GNSS PPP-RTK tightly coupled with low-cost visual-inertial odometry aiming at urban canyons. J. Geodesy 2023, 97, 66. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Wang, X.; Chang, H.; Tan, Y.; Shen, Z. Factor graph-based PPP-RTK for accurate and robust positioning in urban environments. J. Geodesy 2024, 98, 21. [Google Scholar] [CrossRef]
- Hou, P.; Zhang, B.; Yasyukevich, Y.V. Homogeneous PPP–RTK user positioning performance as a consequence of network integer ambiguity resolution. GPS Solut. 2024, 28, 60. [Google Scholar] [CrossRef]
- Zhang, B.; Teunissen, P.J.G.; Odijk, D. A Novel Un-differenced PPP-RTK Concept. J. Navig. 2011, 64, S180–S191. [Google Scholar] [CrossRef]
- Geng, J.; Zeng, R.; Guo, J. Assessing all-frequency GPS/Galileo/BDS PPP-RTK in GNSS challenging environments. GPS Solut. 2023, 28, 5. [Google Scholar] [CrossRef]
- Yang, L.; Fu, Y.; Zhu, J.; Shen, Y.; Rizos, C. GNSS ionospheric integrity monitoring based on RBF-NN: Constructing single-epoch snapshot GIVD and GIVE maps. J. Geodesy 2024, 98, 31. [Google Scholar] [CrossRef]
- Cui, B.; Jiang, X.; Wang, J.; Li, P.; Ge, M.; Schuh, H. A new large-area hierarchical PPP-RTK service strategy. GPS Solut. 2023, 27, 134. [Google Scholar] [CrossRef]
- Fang, Y.; Pei, T.; Song, C.; Chen, J.; Wang, X.; Chen, X.; Liu, Y. A kriging interpolation model for geographical flows. Int. J. Geogr. Inf. Sci. 2023, 37, 2150–2174. [Google Scholar] [CrossRef]
- Lyu, S.; Xiang, Y.; Soja, B.; Wang, N.; Yu, W.; Truong, T.-K. Uncertainties of Interpolating Satellite-Specific Slant Ionospheric Delays and Impacts on PPP-RTK. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 490–505. [Google Scholar] [CrossRef]
- Li, X.; Han, J.; Li, X.; Huang, J.; Shen, Z.; Wu, Z. A grid-based ionospheric weighted method for PPP-RTK with diverse network scales and ionospheric activity levels. GPS Solut. 2023, 27, 191. [Google Scholar] [CrossRef]
- Psychas, D.; Verhagen, S. Real-Time PPP-RTK Performance Analysis Using Ionospheric Corrections from Multi-Scale Network Configurations. Sensors 2020, 20, 3012. [Google Scholar] [CrossRef]
- Hu, F.; Sha, Z.; Wei, P.; Xia, P.; Ye, S.; Zhu, Y.; Luo, J. Deep learning for GNSS zenith tropospheric delay forecasting based on the informer model using 11-year ERA5 reanalysis data. GPS Solut. 2024, 28, 182. [Google Scholar] [CrossRef]
- Bi, H.; Huang, L.; Zhang, H.; Xie, S.; Zhou, L.; Liu, L. A deep learning-based model for tropospheric wet delay prediction based on multi-layer 1D convolution neural network. Adv. Space Res. 2024, 73, 5031–5042. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, J.; Li, Z.; Li, W.; Yuan, P. A new deep self-attention neural network for GNSS coordinate time series prediction. GPS Solut. 2023, 28, 3. [Google Scholar] [CrossRef]
- Gao, W.; Li, Z.; Chen, Q.; Jiang, W.; Feng, Y. Modelling and prediction of GNSS time series using GBDT, LSTM and SVM machine learning approaches. J. Geodesy 2022, 96, 71. [Google Scholar] [CrossRef]
- Chen, P.; Wang, R.; Yao, Y.; Xiong, M.; Zhang, Y.; Yang, X. A new method for global ionospheric real-time modeling integrating ionospheric VTEC short-term forecast results. J. Geodesy 2024, 98, 98. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, Y.; Kong, J.; Ma, X.; Zhu, H. A New GNSS TEC Neural Network Prediction Algorithm With the Data Fusion of Physical Observation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5801612. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, W.; Li, Z.; Lu, Y. A New Multi-Scale Sliding Window LSTM Framework (MSSW-LSTM): A Case Study for GNSS Time-Series Prediction. Remote Sens. 2021, 13, 3328. [Google Scholar] [CrossRef]
- Tang, J.; Xu, L.; Wu, X.; Chen, K. A Short-Term Forecasting Method for Ionospheric TEC Combining Local Attention Mechanism and LSTM Model. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1001305. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Y.; Kong, J.; Yao, Y.; Gao, X. Ionospheric Refined Mapping Function Construction Based on LSTM. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4100115. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, W.; Wang, J.; Cai, B.; Liu, D.; Ba, X.; Yang, Y. An LSTM-Assisted GNSS/INS Integration System Using IMU Recomputed Error Information for Train Localization. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 2658–2671. [Google Scholar] [CrossRef]
- Li, S.; Xu, T.; Xu, Y.; Jiang, N.; Bastos, L. Forecasting GNSS Zenith Troposphere Delay by Improving GPT3 Model with Machine Learning in Antarctica. Atmosphere 2022, 13, 78. [Google Scholar] [CrossRef]
- Wang, K.; Khodabandeh, A.; Teunissen, P. A study on predicting network corrections in PPP-RTK processing. Adv. Space Res. 2017, 60, 1463–1477. [Google Scholar] [CrossRef]
Item | Strategy |
---|---|
Observation | GPS L1, L2, P1, P2 |
Sampling interval | 30 s |
Orbit and clock product | WUM rapid product |
Cutoff angle | 7° |
Observation prior variance | Pseudorange: 1 m; carrier phase: 0.01 cycle |
Parameter estimation method | Sequential least squares |
Receiver clock | Estimated as white noise |
Ionospheric delay | Estimated with random walk |
Tropospheric delay | Estimated with random walk |
User-side constraint | Ionospheric delay: 5 cm; tropospheric delay: 2 cm |
Antenna correction | Igs20.atx |
Ambiguity resolution strategy | Partial resolution with LAMBDA method |
Model | MSSW-LSTM | LSTM | Standard Methods | |||
---|---|---|---|---|---|---|
Reference Value | Truth (cm) | Raw (cm) | Truth (cm) | Raw (cm) | Truth (cm) | Raw (cm) |
hkss | 0.69 | 0.27 | 0.30 | 0.52 | 0.49 | 0.42 |
hksc | 0.25 | 0.20 | 0.41 | 0.37 | 0.45 | 0.40 |
hkqt | 0.35 | 0.47 | 0.35 | 0.66 | 0.36 | 0.45 |
hkmw | 0.62 | 0.30 | 0.53 | 0.40 | 0.58 | 0.41 |
Model | MSSW-LSTM | LSTM | ||
---|---|---|---|---|
Reference Value | Truth (cm) | Raw (cm) | Truth (cm) | Raw (cm) |
hkss | 0.41 | 0.22 | 0.46 | 0.39 |
hksc | 0.33 | 0.25 | 0.52 | 0.31 |
hkqt | 0.28 | 0.31 | 0.42 | 0.51 |
hkmw | 0.48 | 0.26 | 0.45 | 0.43 |
Model | MSSW-LSTM | LSTM | ||
---|---|---|---|---|
Reference Value | Truth (cm) | Raw (cm) | Truth (cm) | Raw (cm) |
hkss | 0.38 | 0.19 | 0.44 | 0.36 |
hksc | 0.31 | 0.22 | 0.48 | 0.27 |
hkqt | 0.26 | 0.29 | 0.38 | 0.47 |
hkmw | 0.44 | 0.22 | 0.43 | 0.39 |
Model | MSSW-LSTM | LSTM | Standard Method | ||||||
---|---|---|---|---|---|---|---|---|---|
Direction | E (cm) | N (cm) | U (cm) | E (cm) | N (cm) | U (cm) | E (cm) | N (cm) | U (cm) |
hkss | 2.10 | 2.17 | 2.87 | 1.86 | 2.52 | 3.23 | 2.23 | 2.76 | 3.50 |
hksc | 3.61 | 2.01 | 4.40 | 5.22 | 2.54 | 4.88 | 5.00 | 2.51 | 5.28 |
hkqt | 1.35 | 2.42 | 3.59 | 2.14 | 3.34 | 4.00 | 1.89 | 3.87 | 4.49 |
hkmw | 3.32 | 2.11 | 6.48 | 2.40 | 2.36 | 5.98 | 2.40 | 2.36 | 7.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Zhou, X.; Chen, H.; He, J.; Chen, R.; Ding, J. A Short-Term Prediction Method for Tropospheric Delay Products in PPP-RTK Based on Multi-Scale Sliding Window LSTM. Atmosphere 2025, 16, 503. https://doi.org/10.3390/atmos16050503
He L, Zhou X, Chen H, He J, Chen R, Ding J. A Short-Term Prediction Method for Tropospheric Delay Products in PPP-RTK Based on Multi-Scale Sliding Window LSTM. Atmosphere. 2025; 16(5):503. https://doi.org/10.3390/atmos16050503
Chicago/Turabian StyleHe, Linyu, Xingyu Zhou, Hua Chen, Jie He, Runhua Chen, and Jie Ding. 2025. "A Short-Term Prediction Method for Tropospheric Delay Products in PPP-RTK Based on Multi-Scale Sliding Window LSTM" Atmosphere 16, no. 5: 503. https://doi.org/10.3390/atmos16050503
APA StyleHe, L., Zhou, X., Chen, H., He, J., Chen, R., & Ding, J. (2025). A Short-Term Prediction Method for Tropospheric Delay Products in PPP-RTK Based on Multi-Scale Sliding Window LSTM. Atmosphere, 16(5), 503. https://doi.org/10.3390/atmos16050503