Fine-Scale Identification of Agricultural Flooding Disaster Areas Based on Sentinel-1/2: A Case Study of Shengzhou, Zhejiang Province, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Overview of the Study Area
2.2. Data Sources
2.2.1. Rainfall and Disaster Data
2.2.2. Remote Sensing Data
2.2.3. Vector and Digital Elevation Data
3. Research Methods
3.1. Construction of the Land Cover Classification Model
3.1.1. Data Preprocessing
3.1.2. Convolutional Layer
3.1.3. Global Average Pooling Layer
3.1.4. Fully Connected Layer
3.1.5. Model Compilation
3.2. Farmland Identification and Localization
3.3. Refined Identification of Disaster-Affected Areas
4. Results and Analysis
4.1. Analysis of the Results from Training the Land Cover Classification Model
4.2. Analysis of Farmland Identification and Localization Results
4.3. Analysis of Refined Identification Results of Disaster-Affected Areas
5. Conclusions
- Deep fusion of microwave and optical remote sensing data can accurately identify flood disaster areas.
- The reverse calculation results of the disaster-affected farmland area in each township by this method are consistent with the actual disaster data.
- Agricultural flood disaster areas in Shengzhou City exhibit a distinct spatially uneven distribution.
- The disaster-affected areas are mainly distributed in Sanjie Town, the central and southwestern parts of Huangze Town, Jinting Town, the southeastern part of Shihuang Town, Changle Town, and Guimen Township. These areas are located in the northern, eastern, and southwestern regions of Shengzhou City, situated at the city’s periphery.
- The topography of Shengzhou City is predominantly mountainous and hilly. Farmland located near mountains and hills and in low-lying areas is more susceptible to flood disasters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Wang, K.Q.; Miao, Q. Risk Zoning of Flood and Waterlogging in Weifang. Nanjing Univ. Inf. Sci. Technol. Nat. Sci. 2013, 5, 508–514. (In Chinese) [Google Scholar] [CrossRef]
- Quan, T.; Zhang, C.G.; Feng, Y.; Li, H.J.; Guo, Y.; Shen, Y.J. Impact of the “23·7” Extreme Heavy Precipitation on Maize Yield in the Hebei Plain. Chin. J. Eco-Agric. 2024, 32, 1023–1032. (In Chinese) [Google Scholar]
- Li, Z.H.; Wang, J.W.; Hu, Y.F.; Zhu, W.; Fu, X.; Zhang, S.C.; Yu, C.; Wang, L.; Zhang, C.; Du, J.T.; et al. Rapid Assessment of Traffic Inefficiency Under Flood Scenarios Over Wide Regions. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 1039–1049+990. (In Chinese) [Google Scholar] [CrossRef]
- Huo, Z.G.; Fan, Y.X.; Yang, J.Y.; Shang, Y. Review on Agricultural Flood Disaster in China. J. Appl. Meteorol. Sci. 2017, 28, 641–653. (In Chinese) [Google Scholar]
- Ma, J.L.; Kong, W.S.; Zhu, T.H. Characteristics, Impacts of Agricultural Disaster, and Mechanism of Disaster Prevention, Mitigation and Response—From the Perspective of Literature Review. J. China Agric. Univ. Soc. Sci. 2020, 37, 122–129. (In Chinese) [Google Scholar] [CrossRef]
- Wen, L.; Miao, X.Y.; Wang, T.; Wang, J.Q.; Yang, J.H.; Liu, R.H.; Ma, M. A Novel Multi-Scenario Mitigation Model for Rainstorm Flood Disasters. Int. J. Disaster Risk Reduct. 2025, 119, 105321. [Google Scholar] [CrossRef]
- Salih, A.; Hassablla, A. Flash Flood Risk Assessment in the Asir Region, Southwestern Saudi Arabia, Using a Physically-Based Distributed Hydrological Model and GPM IMERG Satellite Rainfall Data. Atmosphere 2024, 15, 624. [Google Scholar] [CrossRef]
- Farooq, U.; Taha Bakheit Taha, A.; Tian, F.; Yuan, X.; Ajmal, M.; Ullah, I.; Ahmad, M. Flood Modelling and Risk Analysis of Cinan Feizuo Flood Protection Area, Huaihe River Basin. Atmosphere 2023, 14, 678. [Google Scholar] [CrossRef]
- Wang, X.J.; Xia, J.Q.; Dong, B.L. Spatiotemporal Variation of Flood Disaster Losses and Future Assessment in the Middle and Lower Region of the Yangtze River. Int. J. Disaster Risk Reduct. 2025, 116, 105122. [Google Scholar] [CrossRef]
- Wang, X.M.; Chen, W.X.; Yin, J.; Wang, L.Z.; Guo, H.X. Risk Assessment of Flood Disasters in the Poyang Lake Area. Int. J. Disaster Risk Reduct. 2024, 100, 104208. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, B.Y.; Shao, S.B.; Hao, M.Q.; Zhang, Y.Q.; Xu, Y.; Kuang, Y.; Dong, L.; Wang, Z. Risk Assessment and Zoning of Flood Disaster in Wuchengxiyu Region, China. Urban Clim. 2023, 49, 101562. [Google Scholar] [CrossRef]
- Zheng, X.Z.; Duan, C.F.; Chen, Y.; Li, R.; Wu, Z.X. Disaster Loss Calculation Method of Urban Flood Bimodal Data Fusion Based on Remote Sensing and Text. J. Hydrol. Reg. Stud. 2023, 47, 101410. [Google Scholar] [CrossRef]
- Ma, S.Q.; Lyu, S.R.; Zhang, Y.D. Weighted Clustering-Based Risk Assessment on Urban Rainstorm and Flood Disaster. Urban Clim. 2021, 39, 100974. [Google Scholar] [CrossRef]
- Shu, X.Y.; Ye, C.L.; Xu, Z.X.; Liao, R.T.; Zhang, S.L. A Multiscale Physically-Based Approach to Urban Flood Risk Assessment Using ABM and Multi-Source Remote Sensing Data. Int. J. Disaster Risk Reduct. 2025, 119, 105332. [Google Scholar] [CrossRef]
- Tayyab, M.; Hussain, M.; Zhang, J.Q.; Ullah, S.; Tong, Z.J.; Rahman, Z.U.; Al-Aizari, A.R.; Al-Shaibah, B. Leveraging GIS-Based AHP, Remote Sensing, and Machine Learning for Susceptibility Assessment of Different Flood Types in Peshawar, Pakistan. J. Environ. Manag. 2024, 371, 123094. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.C.; Wang, X.G.; Zhang, Y. Flood Disaster Monitoring Based on Sentinel-1 Data: A Case Study of Sihu Basin and Huaibei Plain, China. Water Sci. Eng. 2021, 14, 87–96. [Google Scholar] [CrossRef]
- Lu, Y.W.; Zhai, G.F.; Zhou, S.T. An Integrated Bayesian Networks and Geographic Information System (BNs-GIS) Approach for Flood Disaster Risk Assessment: A Case Study of Yinchuan, China. Ecol. Indic. 2024, 166, 112322. [Google Scholar] [CrossRef]
- Guo, Q.C.; Jiao, S.; Yang, Y.C.; Yu, Y.; Pan, Y.Q. Assessment of Urban Flood Disaster Responses and Causal Analysis at Different Temporal Scales Based on Social Media Data and Machine Learning Algorithms. Int. J. Disaster Risk Reduct. 2025, 117, 105170. [Google Scholar] [CrossRef]
- Parodi, E.; Kahhat, R.; Vázquez-Rowe, I. Multi-Dimensional Damage Assessment (MDDA): A Case Study of El Niño Flood Disasters in Peru. Clim. Risk Manag. 2021, 33, 100329. [Google Scholar] [CrossRef]
- Sundaresan, A.A.; Solomon, A.A. Post-Disaster Flooded Region Segmentation Using DeepLabv3+ and Unmanned Aerial System Imagery. Nat. Hazards Res. 2024; in press. [Google Scholar] [CrossRef]
- Keum, H.J.; Han, K.Y.; Kim, H.I. Real-Time Flood Disaster Prediction System by Applying Machine Learning Technique. KSCE J. Civ. Eng. 2020, 24, 2835–2848. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, S.B.; Chen, Y.B.; Li, A.Z. Ground Object Classification Based on Sentinel-1A Radar Data and Sentinel-2A Multispectral Data. World Geol. 2021, 40, 438–444. (In Chinese) [Google Scholar]
- Adrah, E.; Wong, J.P.; Yin, H. Integrating GEDI, Sentinel-2, and Sentinel-1 Imagery for Tree Crops Mapping. Remote Sens. Environ. 2025, 319, 114644. [Google Scholar] [CrossRef]
- Cardona-Mesa, A.A.; Vásquez-Salazar, R.D.; Gómez, L.; Travieso-González, C.M.; Garavito-González, A.F.; Vásquez-Cano, E.; Díaz-Paz, J.P. Dataset of Sentinel-1 SAR and Sentinel-2 RGB-NDVI Imagery. Data Brief 2024, 57, 111160. [Google Scholar] [CrossRef]
- Li, H.; Bian, X.W. Vulnerability Analysis and Risk Zoning of Regional Lightning Disaster in Zhejiang Province. J. Nanjing Univ. Inf. Sci. Technol. Nat. Sci. 2014, 6, 336–341. (In Chinese) [Google Scholar] [CrossRef]
- Peng, C.X.; Duan, Y.H.; Feng, J.N. Analysis of Fine Structure of Precipitation in Outer Rainbands of Super Typhoon Lekima in 2019. Period. Ocean. Univ. China 2025, 55, 1–12. (In Chinese) [Google Scholar] [CrossRef]
- Qian, Z.L.; Shen, Z.W.; Zuo, J. Analysis of Extreme Precipitation in Zhejiang Province Caused by Typhoon “Muifa”. Mar. Forecast. 2024, 41, 104–116. (In Chinese) [Google Scholar]
- Shen, X.L.; Li, F. Analysis of Extreme Precipitation in Zhejiang Caused by Typhoon “In-Fa”. Mar. Forecast. 2022, 39, 37–47. (In Chinese) [Google Scholar]
- Mu, Y.L.; Chen, S.B.; Cao, Y.J.; Zhu, B.X.; Li, A.Z.; Cui, L.; Dai, R.; Zeng, Q.H. Tracking the Impact of Typhoons on Maize Growth and Recovery Using Sentinel-1 and Sentinel-2 Data: A Case Study of Northeast China. Agric. For. Meteorol. 2024, 359, 110266. [Google Scholar] [CrossRef]
- Yin, Z.X.; Wu, P.H.; Li, X.Y.; Hao, Z.; Ma, X.S.; Fan, R.R.; Liu, C.; Ling, F. Super-Resolution Water Body Mapping with a Feature Collaborative CNN Model by Fusing Sentinel-1 and Sentinel-2 Images. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104176. [Google Scholar] [CrossRef]
- Pratama, B.A.S.; Danoedoro, P.; Arjasakusuma, S. Exploring Optimal Integration Schemes for Sentinel-1 SAR and Sentinel-2 Multispectral Data in Land Cover Mapping Across Different Atmospheric Conditions. Remote Sens. Appl. Soc. Environ. 2024, 34, 101185. [Google Scholar] [CrossRef]
- Guo, Z.H.; Cai, D.D.; Jin, Z.Y.; Xu, T.Y.; Yu, F.H. Research on Unmanned Aerial Vehicle (UAV) Rice Field Weed Sensing Image Segmentation Method Based on CNN-Transformer. Comput. Electron. Agric. 2025, 229, 109719. [Google Scholar] [CrossRef]
- Padhi, J.; Mishra, K.; Ratha, A.K.; Behera, S.K.; Sethy, P.K.; Nanthaamornphong, A. Enhancing Paddy Leaf Disease Diagnosis—A Hybrid CNN Model Using Simulated Thermal Imaging. Smart Agric. Technol. 2025, 10, 100814. [Google Scholar] [CrossRef]
- Paymode, A.S.; Malode, V.B. Transfer Learning for Multi-Crop Leaf Disease Image Classification Using Convolutional Neural Network VGG. Artif. Intell. Agric. 2022, 6, 23–33. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhao, J.L.; Ji, X.F.; Li, J.H.; Wang, C.Y. Tobacco Cabinet State Recognition Model Based on Improved VGG Network. Comput. Eng. Des. 2023, 44, 1796–1803. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.A.; Xie, Q.; Ma, Y.C.; Liu, Y.J. An Image Semantic Segmentation Method Based on Path Aggregation Atrous Convolutional Network. Comput. Eng. Sci. 2021, 43, 712–720. (In Chinese) [Google Scholar]
Township | 13 June 2021 | 26 July 2021 | 15 August 2021 | Summary of the Three Flood Disasters | ||||
---|---|---|---|---|---|---|---|---|
Quantity | Proportion | Quantity | Proportion | Quantity | Proportion | Quantity | Proportion | |
Sanjie | 144 | 6.70% | 1246 | 57.98% | 0 | 0 | 1292 | 60.12% |
Jinting | 0 | 0 | 989 | 69.65% | 0 | 0 | 989 | 69.59% |
Guimen | 0 | 0 | 337 | 59.33% | 377 | 66.37% | 482 | 84.86% |
Shihuang | 409 | 36.95% | 94 | 8.49% | 0 | 0 | 472 | 42.64% |
Changle | 300 | 12.67% | 1 | 0.04% | 58 | 2.45% | 354 | 14.95% |
Huangze | 0 | 0 | 330 | 20.85% | 0 | 0 | 330 | 20.85% |
Xiawang | 0 | 0 | 103 | 34.11% | 0 | 0 | 103 | 34.11% |
Chongren | 18 | 0.70% | 41 | 1.60% | 36 | 1.41% | 93 | 3.64% |
Lushan | 0 | 0 | 15 | 1.24% | 69 | 5.71% | 84 | 6.95% |
Ganlin | 0 | 0 | 37 | 1.52% | 47 | 1.93% | 83 | 3.40% |
Xianyan | 0 | 0 | 58 | 8.24% | 20 | 2.84% | 74 | 10.51% |
Pukou | 0 | 0 | 35 | 2.02% | 4 | 0.23% | 38 | 2.19% |
Shanhu | 0 | 0 | 22 | 2.20% | 9 | 0.90% | 29 | 2.91% |
Gulai | 1 | 0.15% | 0 | 0 | 0 | 0 | 1 | 0.15% |
Sanjiang | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Gao, J.; Chen, H.; Shen, X.; Zhu, X.; Qiao, Y. Fine-Scale Identification of Agricultural Flooding Disaster Areas Based on Sentinel-1/2: A Case Study of Shengzhou, Zhejiang Province, China. Atmosphere 2025, 16, 420. https://doi.org/10.3390/atmos16040420
Li J, Gao J, Chen H, Shen X, Zhu X, Qiao Y. Fine-Scale Identification of Agricultural Flooding Disaster Areas Based on Sentinel-1/2: A Case Study of Shengzhou, Zhejiang Province, China. Atmosphere. 2025; 16(4):420. https://doi.org/10.3390/atmos16040420
Chicago/Turabian StyleLi, Jiayun, Jiaqi Gao, Haiyan Chen, Xiaoling Shen, Xiaochen Zhu, and Yinhu Qiao. 2025. "Fine-Scale Identification of Agricultural Flooding Disaster Areas Based on Sentinel-1/2: A Case Study of Shengzhou, Zhejiang Province, China" Atmosphere 16, no. 4: 420. https://doi.org/10.3390/atmos16040420
APA StyleLi, J., Gao, J., Chen, H., Shen, X., Zhu, X., & Qiao, Y. (2025). Fine-Scale Identification of Agricultural Flooding Disaster Areas Based on Sentinel-1/2: A Case Study of Shengzhou, Zhejiang Province, China. Atmosphere, 16(4), 420. https://doi.org/10.3390/atmos16040420