Consistency of Changes in the Ascending and Descending Positions of the Hadley Circulation Using Different Methods
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Centroid Method
2.3. Streamfunction Method
2.4. Kuo–Eliassen Equation
2.5. Useful Variables Related to the HC Description
2.6. Atmospheric Heat Transport
3. Results
3.1. Changes in Precipitation Latitudinal Distribution
3.2. ITCZ Position
3.3. Other Hadley Circulation Properties
3.4. Relationship Between AHT and ITCZ Location
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chemke, R. Large Hemispheric Differences in the Hadley Cell Strength Variability Due to Ocean Coupling. Npj Clim. Atmos. Sci. 2022, 5, 1. [Google Scholar] [CrossRef]
- Byrne, M.P.; Pendergrass, A.G.; Rapp, A.D.; Wodzicki, K.R. Response of the Intertropical Convergence Zone to Climate Change: Location, Width, and Strength. Curr. Clim. Change Rep. 2018, 4, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Frierson, D.M.W.; Hwang, Y.T. Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Clim. 2012, 25, 720–733. [Google Scholar]
- Lu, J.; Vecchi, G.A.; Reichler, T. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 2007, 34, L06805. [Google Scholar]
- Lu, J.; Deser, C.; Reichler, T. Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett. 2009, 36, L03803. [Google Scholar] [CrossRef]
- Santer, B.D.; Wehner, M.F.; Wigley, T.M.L.; Sausen, R.; Meehl, G.A.; Taylor, K.E.; Ammann, C.; Arblaster, J.; Washington, W.M.; Boyle, J.S.; et al. Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 2003, 301, 479–483. [Google Scholar]
- Seidel, D.J.; Randel, W.J. Recent widening of the tropical belt: Evidence from tropopause observations. J. Geophys. Res. 2007, 112, D20113. [Google Scholar] [CrossRef]
- Seidel, D.J.; Fu, Q.; Randel, W.J.; Reichler, T.J. Widening of the tropical belt in a changing climate. Nat. Geosci. 2008, 1, 21–24. [Google Scholar]
- Su, H.; Jiang, J.H.; Neelin, J.D.; Shen, T.J.; Zhai, C.; Yue, Q.; Wang, Z.; Huang, L.; Choi, Y.S.; Stephens, G.L.; et al. Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate. Nat. Commun. 2017, 8, 15771. [Google Scholar] [CrossRef]
- Tao, L.; Hu, Y.; Liu, J. Anthropogenic forcing on the Hadley Circulation in CMIP5 simulations. Clim. Dyn. 2016, 46, 3337–3350. [Google Scholar]
- Wodzicki, K.R.; Rapp, A.D. Long-term characterization of the Pacific ITCZ using TRMM, GPCP, and ERA-Interim. J. Geophys. Res. Atmos. 2016, 121, 3153. [Google Scholar]
- Mamalakis, A.; Randerson, J.T.; Yu, J.-Y.; Pritchard, M.S.; Magnusdottir, G.; Smyth, P.; Levine, P.A.; Yu, S.; Foufoula-Georgiou, E. Zonally contrasting shifts of the tropical rain belt in response to climate change. Nat. Clim. Change 2021, 11, 143–151. [Google Scholar] [CrossRef]
- Webster, P.J. The elementary Hadley circulation. In The Hadley Circulation: Present, Past, and Future; Diaz, H.F., Bradley, R.S., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 2004; pp. 9–60. [Google Scholar]
- Byrne, M.P.; Schneider, T. Atmospheric dynamics feedback: Concept, simulations and climate implications. J. Clim. 2018, 31, 3249–3264. [Google Scholar] [CrossRef]
- Kang, S.M.; Shin, Y.; Xie, S.P. Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean Ekman advection. Npj Clim. Atmos. Sci. 2018, 1, 20172. [Google Scholar] [CrossRef]
- Chemke, R.; Polvani, L.M. Opposite tropical circulation trends in climate models and in reanalyses. Nat. Geosci. 2019, 12, 528–532. [Google Scholar] [CrossRef]
- Adler, R.F.; Gu, G.; Sapiano, M.; Wang, J.J.; Huffman, G.J. Global Precipitation: Means, Variations and Trends During the Satellite Era (1979–2014). Surv. Geophys. 2017, 38, 679–699. [Google Scholar] [CrossRef]
- Allan, R.P.; Liu, C.; Zahn, M.; Lavers, D.A.; Koukouvagias, E.; Bodas-Salcedo, A. Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys. 2014, 35, 533–552. [Google Scholar] [CrossRef]
- Lau, K.M.; Wu, H.T. Detecting trends in tropical rainfall characteristics, 1979–2003. Int. J. Climatol. 2007, 27, 979. [Google Scholar]
- Liu, C.; Allan, R.P. Multisatellite observed responses of precipitation and its extremes to interannual climate variability. J. Geophys. Res. 2012, 117, D03101. [Google Scholar] [CrossRef]
- Liu, C.; Allan, R.P.; Huffman, G.J. Co-variation of temperature and precipitation in CMIP5 models and satellite observations. Geophys. Res. Lett. 2012, 39, L13803. [Google Scholar]
- Staten, P.W.; Lu, J.; Grise, K.M.; Davis, S.M.; Birner, T. Re-examining tropical expansion. Nat. Clim. Change 2018, 8, 768–775. [Google Scholar] [CrossRef]
- Staten, P.W.; Grise, K.M.; Davis, S.M.; Karnauskas, K.B.; Waugh, D.W.; Maycock, A.C.; Fu, Q.; Cook, K.; Adam, O.; Simpson, I.R.; et al. Tropical widening: From global variations to regional impacts. Bull. Am. Meteorol. Soc. 2020, 101, E897–E904. [Google Scholar] [CrossRef]
- Hari, V.; Villarini, G.; Karmakar, S.; Wilcox, L.J.; Collins, M. Northward propagation of the Intertropical Convergence Zone and strengthening of Indian summer monsoon rainfall. Geophys. Res. Lett. 2020, 47, e2020GL089823. [Google Scholar] [CrossRef]
- Gu, G.; Adler, R.F.; Huffman, G.J. Long-term changes/trends in surface temperature and precipitation during the satellite era (1979–2012). Clim. Dyn. 2016, 46, 1091. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, K.M.; Sud, Y.; Betts, A. Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J. Geophys. Res. 2011, 116, D09101. [Google Scholar] [CrossRef]
- Liu, C.; Liao, X.; Qiu, J.; Yang, Y.; Feng, X.; Allan, R.P.; Cao, N.; Long, J.; Xu, J. Observed variability of intertropical convergence zone over 1998–2018. Environ. Res. Lett. 2020, 15, 104011. [Google Scholar] [CrossRef]
- Bony, S.; Stevens, B.; Coppin, D.; Becker, T.; Reed, K.A.; Voigt, A.; Medeiros, B. Thermodynamic control of anvil cloud amount. Proc. Natl. Acad. Sci. USA 2016, 113, 8927–8932. [Google Scholar] [CrossRef]
- Schneider, T.; Bischoff, T.; Haug, G.H. Migrations and dynamics of the intertropical convergence zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef]
- Donohoe, A.; Voigt, A. Why future shifts in tropical precipitation will likely be small: The location of the tropical rain belt and the hemispheric contrast of energy input to the atmosphere. In Climate Extremes: Patterns and Mechanisms; John Wiley and Sons: Hoboken, NJ, USA, 2017; pp. 115–226. [Google Scholar]
- Bellomo, K.; Clement, A.C. Evidence for weakening of the Walker circulation from cloud observations. Geophys. Res. Lett. 2015, 42, 7758–7766. [Google Scholar] [CrossRef]
- Byrne, M.P.; Schneider, T. Narrowing of the ITCZ in a warming climate: Physical mechanisms. Geophys. Res. Lett. 2016, 43, 350–375. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, C.; Liu, J. Observational evidence for poleward expansion of the Hadley circulation. Adv. Atmos. Sci. 2011, 28, 33–44. [Google Scholar] [CrossRef]
- Nguyen, H.; Evans, A.; Lucas, C.; Smith, I.; Timbal, B. The Hadley circulation in reanalyses: Climatology, variability, and change. J. Clim. 2013, 26, 3357–3376. [Google Scholar] [CrossRef]
- Adam, O.; Schneider, T.; Harnik, N. Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. J. Clim. 2014, 27, 7450–7461. [Google Scholar]
- Ceppi, P.; Hartmann, D.L. Clouds and the atmospheric circulation response to warming. J. Clim. 2016, 29, 783–799. [Google Scholar] [CrossRef]
- Cubasc, U.; Stocker, T.F. Introduction. In Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013; pp. 119–158. Available online: http://www.climatechange2013.org/images/report/WG1AR5_Chapter01_FINAL.pdf (accessed on 15 March 2021).
- Grise, K.M.; Davis, S.M.; Simpson, I.R.; Waugh, D.W.; Fu, Q.; Allen, R.J.; Staten, P.W. Recent tropical expansion: Natural variability or forced response? J. Clim. 2018, 32, 1551–1571. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, H.; Zhou, C. Widening and weakening of the Hadley circulation under global warming. Sci. Bull. 2018, 63, 640–644. [Google Scholar] [CrossRef]
- Johanson, C.M.; Fu, Q. Hadley cell widening: Model simulations versus observations. J. Clim. 2009, 22, 2713–2725. [Google Scholar]
- Lionello, P.; D’Agostino, R.; Ferreira, D.; Nguyen, H.; Singh, M.S. The Hadley circulation in a changing climate. Ann. N. Y. Acad. Sci. 2024, 1534, 69–93. [Google Scholar] [CrossRef]
- Lucas, C.; Timbal, B.; Nguyen, H. The expanding tropics: A critical assessment of the observational and modeling studies. WIREs Clim. Change 2014, 5, 89–112. [Google Scholar]
- Seo, K.-H.; Yoon, S.-P.; Lu, J.; Hu, Y.; Staten, P.W.; Frierson, D.M.W. What controls the interannual variation of Hadley cell extent in the Northern Hemisphere: Physical mechanism and empirical model for edge variation. Npj Clim. Atmos. Sci. 2023, 6, 204. [Google Scholar] [CrossRef]
- Xia, Y.; Hu, Y.; Liu, J. Comparison of trends in the Hadley circulation between CMIP6 and CMIP5. Sci. Bull. 2020, 65, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, Q.; Wang, K.; Sun, Y.; Sun, D. Decomposing the meridional heat transport in the climate system. Clim. Dyn. 2015, 44, 2751–2768. [Google Scholar] [CrossRef]
- Hu, Y.; Fu, Q. Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys. 2007, 7, 5229. [Google Scholar] [CrossRef]
- Adler, R.F.; Gu, G.; Wang, J.J.; Huffman, G.J.; Curtis, S.; Bolvin, D.T. Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J. Geophys. Res. 2008, 113, D22104. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Simmons, A. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1–51. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5453. [Google Scholar]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Zaplotnik, Ž.; Pikovnik, M.; Boljka, L. Recent Hadley circulation strengthening: A trend or multidecadal variability? J. Clim. 2022, 35, 4157–4176. [Google Scholar] [CrossRef]
- Philander, S.G.H.; Gu, D.; Halpern, D.; Lambert, G.; Lau, N.C.; Li, T.; Pacanowski, R.C. Why the ITCZ is mostly north of the equator. J. Clim. 1996, 9, 2958–2972. [Google Scholar] [CrossRef]
- Sultan, B.; Janicot, S. Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophys. Res. Lett. 2000, 27, 3353–3356. [Google Scholar] [CrossRef]
- Donohoe, A.; Marshall, J.; Ferreira, D.; Mcgee, D. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the last glacial maximum. J. Clim. 2013, 26, 3597–3618. [Google Scholar] [CrossRef]
- Burnett, A.C.; Sheshadri, A.; Silvers, L.G.; Robinson, T. Tropical cyclone frequency under varying SSTs in aquaplanet simulations. Geophys. Res. Lett. 2021, 48, e2020GL091980. [Google Scholar] [CrossRef]
- Liao, X.; Holloway, C.E.; Feng, X.; Liu, C.; Lyu, X.; Xue, Y.; Bao, R.; Li, J.; Qiao, F. Observed interannual relationship between ITCZ position and tropical cyclone frequency. J. Clim. 2023, 36, 5587–5603. [Google Scholar] [CrossRef]
- Oort, A.H.; Yienger, J.J. Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Clim. 1996, 9, 2751–2767. [Google Scholar] [CrossRef]
- Schwendike, J.; Berry, G.J.; Reeder, M.J.; Jakob, C.; Govekar, P.; Wardle, R. Trends in the local Hadley and local Walker circulations. J. Geophys. Res. Atmos. 2015, 120, 7599–7618. [Google Scholar] [CrossRef]
- Hess, O.; Chemke, R. Anthropogenic forcings reverse a simulated multi-century naturally-forced Northern Hemisphere Hadley cell intensification. Nat. Commun. 2024, 15, 4001. [Google Scholar] [CrossRef]
- Stachnik, J.P.; Schumacher, C. A comparison of the Hadley circulation in modern reanalyses. J. Geophys. Res. 2011, 116, D22102. [Google Scholar] [CrossRef]
- Chemke, R.; Polvani, L.M. Exploiting the abrupt 4 × CO2 scenario to elucidate tropical expansion mechanisms. J. Clim. 2018, 32, 859–875. [Google Scholar] [CrossRef]
- Loeb, N.G.; Wang, H.; Cheng, A.; Kato, S.; Fasullo, J.; Xu, K.; Allan, R.P. Observational constraints on atmospheric and oceanic cross-equatorial heat transports: Revisiting the precipitation asymmetry problem in climate models. Clim. Dyn. 2016, 46, 9–10. [Google Scholar] [CrossRef]
- Hipel, K.W.; Mcleod, A.I. Time Series Modelling of Water Resources and Environmental Systems; Elsevier: Amsterdam, The Netherlands, 1994; p. 1012. [Google Scholar]
- Liu, C.; Allan, R.P.; Mayer, M.; Hyder, P.; Desbruyères, D.; Cheng, L.; Xu, J.; Xu, F.; Zhang, Y. Variability in the global energy budget and transports 1985–2017. Clim. Dyn. 2020, 55, 3381–3396. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar]
- Vecchi, G.A.; Soden, B.J.; Wittenberg, A.T.; Held, I.M.; Leetmaa, A.; Harrison, M.J. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 2006, 441, 73–76. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, R.; Lionello, P. Evidence of Global Warming Impact on the Evolution of the Hadley Circulation in ECMWF Centennial Reanalyses. Clim. Dyn. 2016, 48, 3047–3060. [Google Scholar] [CrossRef]
Global | America | Africa | Atlantic | Indian Ocean | Western Pacific | Central Pacific | Eastern Pacific | |
---|---|---|---|---|---|---|---|---|
m ± ∆m (p) | m ± ∆m (p) | m ± ∆m (p) | m ± ∆m (p) | m ± ∆m (p) | m ± ∆m (p) | m ± ∆m (p) | m ± ∆m (p) | |
Max P (GPCP) | 0.28 ± 0.12 (0.06) | 0.41 ± 0.31 (0.21) | 0.03 ± 0.21 (0.37) | 0.17 ± 0.25 (0.25) | 0.21 ± 0.26 (0.28) | 0.47 ± 0.32 (0.14) | 0.31 ± 0.30 (0.37) | 0.02 ± 0.22 (0.77) |
Max P (ERA5) | 0.37 ± 0.14 (0.01) | 0.44 ± 0.19 (0.11) | −0.83 ± 0.21 (<0.01) | 0.03 ± 0.16 (0.67) | −0.62 ± 0.27 (0.04) | −0.32 ± 0.24 (0.33) | 0.42 ± 0.24 (0.11) | 0.12 ± 0.17 (0.39) |
Max P (CFSR) | 0.17 ± 0.14 (0.23) | −0.31 ± 0.23 (0.02) | 0.09 ± 0.26 (0.66) | −0.07 ± 0.1 (0.12) | 0.76 ± 0.19 (<0.01) | −0.56 ± 0.30 (0.13) | 0.42 ± 0.27 (0.45) | 0.36 ± 0.22 (0.16) |
Max P (MERRA2) | 0.30 ± 0.13 (0.01) | −0.05 ± 0.19 (0.77) | −0.10 ± 0.12 (0.74) | 0.08 ± 0.16 (0.27) | 0.93 ± 0.29 (<0.01) | −0.15 ± 0.23 (0.25) | 0.42 ± 0.29 (0.29) | 0.10 ± 0.15 (0.63) |
Centroid (GPCP) | 0.13 ± 0.04 (<0.01) | 0.08 ± 0.08 (0.32) | 0.15 ± 0.04 (<0.01) | 0.14 ± 0.05 (0.02) | 0.19 ± 0.07 (<0.01) | 0.06 ± 0.10 (0.87) | 0.05 ± 0.13 (0.90) | 0.18 ± 0.10 (0.11) |
Centroid (ERA5) | 0.0 ± 0.04 (0.39) | −0.41 ± 0.12 (0.01) | −0.08 ± 0.06 (0.21) | −0.20 ± 0.06 (<0.01) | 0.15 ± 0.06 (0.10) | −0.09 ± 0.09 (0.20) | 0.09 ± 0.11 (0.58) | 0.11 ± 0.07 (0.09) |
Centroid (CFSR) | 0.08 ± 0.03 (0.04) | 0.31 ± 0.08 (<0.01) | −0.18 ± 0.04 (<0.01) | 0.14 ± 0.05 (0.02) | 0.05 ± 0.06 (0.65) | −0.01 ± 0.09 (0.65) | 0.08 ± 0.09 (0.55) | 0.18 ± 0.08 (0.02) |
Centroid (MERRA2) | 0.05 ± 0.04 (0.11) | −0.11 ± 0.08 (0.25) | 0.02 ± 0.06 (0.63) | 0.11 ± 0.06 (0.35) | 0.14 ± 0.08 (0.05) | −0.03 ± 0.08 (0.66) | 0.09 ± 0.11 (0.55) | 0.06 ± 0.09 (0.45) |
0.24 ± 0.07 (<0.01) | 1.59 ± 0.68 (0.02) | 0.10 ± 0.37 (0.49) | 0.01 ± 0.34 (0.74) | −0.14 ± 0.19 (0.65) | 0.97 ± 0.47 (0.10) | 0.07 ± 0.74 (0.69) | 0.31 ± 0.48 (0.44) | |
(MERRA2) | 0.05 ± 0.07 (0.68) | 1.34 ± 0.61 (0.02) | 0.35 ± 0.35 (0.44) | 0.26 ± 0.27 (0.58) | −0.16 ± 0.23 (0.20) | −0.44 ± 0.58 (0.36) | 0.80 ± 0.59 (0.13) | 0.52 ± 0.45 (0.23) |
Max P (ERA5) | Max P (CFSR) | Max P (MERRA2) | Centroid (GPCP) | Centroid (ERA5) | Centroid (CFSR) | Centroid (MERRA2) | Ψ (ERA5) | Ψ (MERRA2) | |
---|---|---|---|---|---|---|---|---|---|
Max P (GPCP) | 0.77 | 0.75 | 0.47 | 0.23 | 0.24 | 0.03 | 0.26 | 0.38 | 0.33 |
Max P (ERA5) | 0.77 | 0.40 | 0.11 | 0.13 | −0.16 | 0.16 | 0.27 | 0.20 | |
Max P (CFSR) | 0.24 | 0.01 | 0.01 | −0.09 | 0.10 | 0.18 | 0.17 | ||
Max P (MERRA2) | 0.07 | 0.03 | −0.20 | −0.07 | 0.36 | 0.11 | |||
Centroid (GPCP) | 0.96 | 0.77 | 0.93 | 0.77 | 0.68 | ||||
Centroid (ERA5) | 0.77 | 0.96 | 0.76 | 0.72 | |||||
Centroid (CFSR) | 0.85 | 0.52 | 0.65 | ||||||
Centroid (MERRA2) | 0.69 | 0.74 | |||||||
Ψ (ERA5) | 0.79 |
Intensity | Height | Latitude | ||||
---|---|---|---|---|---|---|
Region | South | North | South | North | South | North |
Global | 0.90 | 0.60 | 0.17 | 0.22 | 0.85 | 0.88 |
America | 0.94 | 0.84 | 0.49 | 0.73 | 0.60 | 0.72 |
Atlantic | 0.89 | 0.90 | 0.51 | 0.53 | 0.70 | 0.45 |
Africa | 0.69 | 0.51 | 0.47 | 0.50 | 0.56 | 0.48 |
Indian Ocean | 0.74 | 0.81 | 0.42 | 0.21 | 0.79 | 0.63 |
Western Pacific | 0.81 | 0.82 | 0.72 | 0.52 | 0.86 | 0.71 |
Central Pacific | 0.92 | 0.91 | 0.85 | 0.79 | 0.78 | 0.76 |
Eastern Pacific | 0.92 | 0.90 | 0.72 | 0.73 | 0.73 | 0.65 |
Data | South Branch Terminus Position | North Branch Terminus Position | South Circulation Width | North Circulation Width |
---|---|---|---|---|
Ψ (ERA5) | −0.21 ± 0.06 (<0.01) | −0.12 ± 0.10 (0.29) | 0.45 ± 0.08 (<0.01) | −0.31 ± 0.11 (0.01) |
Ψ (MERRA2) | 0.01 ± 0.07 (0.97) | 0.05 ± 0.10 (0.78) | 0.07 ± 0.08 (0.51) | 0.01 ± 0.12 (0.96) |
−0.22 ± 0.08 (0.02) | −0.01 ± 0.17 (0.97) | 0.28 ± 0.11 (0.04) | −0.15 ± 0.18 (0.47) | |
−0.12 ± 0.13 (0.33) | 0.17 ± 0.15 (0.11) | 0.65 ± 0.18 (<0.01) | −0.33 ± 0.18 (0.07) | |
ψKE | −0.16 ± 0.06 (0.01) | 0.05 ± 0.09 (0.51) | 0.34 ± 0.11 (0.01) | −0.07 ± 0.16 (0.61) |
P-E (ERA5) | −0.27 ± 0.07 (<0.01) | 0.29 ± 0.11 (0.04) | ||
P-E (MERRA2) | −0.30 ± 0.06 (<0.01) | 0.33 ± 0.11 (<0.01) |
America | Africa | Atlantic | Indian Ocean | Western Pacific | Central Pacific | Eastern Pacific | |||
---|---|---|---|---|---|---|---|---|---|
Data Source | m ± ∆m (p) | m ± ∆m (p) | m ± ∆m (p) | m ± ∆m (p) | m ± ∆m (p) | m ± ∆m (p) | m ± ∆m (p) | ||
South branch | Terminus position | (ERA5) | 0.05 ± 0.19 (0.92) | −0.08 ± 0.21 (0.94) | −0.27 ± 0.23 (0.29) | −0.06 ± 0.13 (0.57) | −0.34 ± 0.26 (0.51) | 1.43 ± 0.87 (0.08) | 0.27 ± 0.29 (0.63) |
(MERRA2) | 0.13 ± 0.24 (0.81) | 0.06 ± 0.18 (0.35) | −0.06 ± 0.19 (0.92) | −0.13 ± 0.13 (0.47) | −0.24 ± 0.26 (0.44) | 0.19 ± 0.96 (0.68) | −0.37 ± 0.35 (0.05) | ||
P-E (ERA5) | −0.85 ± 0.24 (<0.01) | −0.15 ± 0.05 (<0.01) | −0.54 ± 0.16 (<0.01) | 0.15 ± 0.11 (0.15) | −0.25 ± 0.12 (0.15) | 1.27 ± 0.65 (0.07) | −0.62 ± 0.21 (<0.01) | ||
P-E (MERRA2) | −1.27 ± 0.30 (<0.01) | −0.09 ± 0.05 (0.15) | −0.73 ± 0.15 (<0.01) | 0.29 ± 0.11 (0.03) | 0.07 ± 0.18 (0.97) | −0.09 ± 0.69 (0.83) | −0.73 ± 0.18 (<0.01) | ||
Width | ERA5 | 1.54 ± 0.78 (0.05) | 0.19 ± 0.36 (0.65) | 0.29 ± 0.35 (0.48) | −0.08 ± 0.22 (1.00) | 1.32 ± 0.47 (0.01) | −1.36 ± 1.44 (0.51) | 0.04 ± 0.56 (0.80) | |
MERRA2 | 1.22 ± 0.67 (0.07) | 0.29 ± 0.32 (0.26) | 0.32 ± 0.31 (0.36) | −0.03 ± 0.27 (0.49) | −0.20 ± 0.58 (0.61) | 0.62 ± 1.25 (0.69) | 0.90 ± 0.59 (0.19) | ||
North branch | Terminus position | (ERA5) | 0.47 ± 0.31 (0.07) | −0.19 ± 0.10 (0.06) | 0.15 ± 0.17 (0.54) | 0.26 ± 0.10 (0.03) | −1.31 ± 0.95 (0.31) | −0.18 ± 0.35 (0.48) | −0.28 ± 0.25 (0.09) |
(MERRA2) | 0.07 ± 0.30 (0.99) | −0.30 ± 0.14 (0.04) | −0.06 ± 0.17 (0.60) | 0.16 ± 0.11 (0.15) | −0.76 ± 0.62 (0.21) | 0.18 ± 0.35 (0.71) | −0.38 ± 0.27 (0.15) | ||
P-E (ERA5) | 0.15 ± 0.18 (0.52) | 0.19 ± 0.14 (0.21) | 0.02 ± 0.18 (0.60) | −0.12 ± 0.39 (0.80) | 0.64 ± 0.37 (0.02) | 0.17 ± 0.11 (0.17) | 0.27 ± 0.19 (0.14) | ||
P-E (MERRA2) | 0.69 ± 0.19 (<0.01) | 0.22 ± 0.18 (0.31) | 0.43 ± 0.15 (<0.01) | 0.03 ± 0.42 (0.99) | 0.19 ± 0.43 (0.24) | 0.34 ± 0.10 (<0.01) | −0.10 ± 0.22 (0.61) | ||
Width | ERA5 | −1.12 ± 0.64 (0.09) | −0.30 ± 0.41 (0.40) | 0.14 ± 0.45 (0.92) | 0.40 ± 0.19 (0.23) | −2.28 ± 0.99 (0.06) | −0.25 ± 0.59 (0.58) | −0.59 ± 0.67 (0.24) | |
MERRA2 | −1.27 ± 0.59 (0.03) | −0.65 ± 0.44 (0.21) | −0.32 ± 0.37 (0.58) | 0.33 ± 0.24 (0.17) | −0.32 ± 0.83 (0.69) | −0.62 ± 0.49 (0.21) | −0.90 ± 0.65 (0.09) |
South Branch | North Branch | |||||||
---|---|---|---|---|---|---|---|---|
Terminus Latitude | p | Circulation Width | p | Terminus Latitude | Circulation Width | p | ||
Global | 0.61 | <0.01 | 0.57 | <0.01 | 0.88 | <0.01 | 0.83 | <0.01 |
America | 0.71 | <0.01 | 0.48 | <0.01 | 0.49 | <0.01 | 0.37 | 0.02 |
Africa | 0.71 | <0.01 | 0.66 | <0.01 | 0.90 | <0.01 | 0.75 | <0.01 |
Atlantic | 0.77 | <0.01 | 0.52 | <0.01 | 0.76 | <0.01 | 0.75 | <0.01 |
Indian Ocean | 0.76 | <0.01 | 0.57 | <0.01 | 0.68 | <0.01 | 0.58 | <0.01 |
Western Pacific | 0.86 | <0.01 | 0.55 | <0.01 | 0.60 | <0.01 | 0.35 | 0.02 |
Central Pacific | 0.43 | <0.01 | 0.58 | <0.01 | 0.84 | <0.01 | 0.63 | <0.01 |
Eastern Pacific | 0.84 | <0.01 | 0.76 | <0.01 | 0.87 | <0.01 | 0.87 | <0.01 |
JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERA5 | Southern circulation | r (Intensity and θITCZ) | −0.21 | −0.34 | 0.01 | −0.17 | −0.24 | 0.16 | −0.07 | −0.01 | −0.22 | −0.06 | −0.51 | −0.59 |
r (Intensity and θS) | 0.18 | −0.15 | −0.03 | 0.08 | 0.03 | −0.08 | 0.08 | −0.09 | −0.05 | −0.11 | −0.41 | −0.26 | ||
r (Intensity and width) | −0.35 | −0.15 | 0.03 | −0.19 | −0.18 | 0.16 | −0.09 | 0.03 | −0.16 | 0.07 | −0.23 | −0.36 | ||
Northern circulation | r (Intensity and θITCZ) | 0.23 | 0.25 | 0.05 | −0.47 | −0.57 | −0.47 | −0.20 | −0.28 | −0.18 | −0.55 | −0.06 | 0.35 | |
r (Intensity and θN) | −0.33 | −0.15 | −0.22 | −0.30 | −0.06 | 0.09 | −0.21 | 0.08 | −0.11 | −0.02 | −0.08 | −0.31 | ||
r (Intensity and width) | −0.34 | −0.27 | −0.18 | 0.33 | 0.30 | 0.40 | −0.12 | 0.20 | −0.00 | 0.17 | 0.02 | −0.45 | ||
MERRA2 | Southern circulation | r (Intensity and θITCZ) | −0.33 | −0.29 | −0.10 | −0.27 | −0.21 | −0.10 | −0.14 | −0.08 | −0.34 | −0.16 | −0.58 | −0.65 |
r (Intensity and θS) | 0.13 | 0.14 | −0.16 | 0.02 | −0.29 | −0.21 | 0.09 | −0.11 | 0.01 | −0.23 | −0.57 | −0.12 | ||
r (Intensity and width) | −0.45 | −0.32 | 0.04 | −0.23 | 0.04 | −0.00 | −0.15 | −0.00 | −0.23 | 0.12 | −0.13 | −0.52 | ||
Northern circulation | r (Intensity and θITCZ) | 0.15 | 0.19 | −0.05 | −0.25 | −0.56 | −0.15 | −0.28 | −0.23 | −0.06 | −0.40 | −0.19 | 0.43 | |
r (Intensity and θN) | −0.14 | 0.03 | −0.09 | −0.42 | −0.26 | 0.14 | −0.34 | 0.07 | −0.18 | −0.19 | −0.03 | −0.24 | ||
r (Intensity and width) | −0.19 | −0.10 | −0.01 | −0.02 | 0.23 | 0.25 | −0.26 | 0.17 | −0.16 | −0.05 | 0.15 | −0.50 |
JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERA5 | ITCZ position | Maximum θITCZ | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC |
Minimum θITCZ | −11.1° | −10.6° | −6.2° | 4.1° | 9.3° | 20.0° | 22.2° | 20.4° | 20.0° | 10.0° | 4.9° | −5.0° | ||
Southern circulation | Maximum θS | −16.4° | −15.4° | −11.2° | −4.9° | 4.2° | 10.8° | 14.5° | 14.7° | 12.2° | 6.7° | −4.3° | −14.7° | |
Minimum θS | −32.6° | −33.1° | −32.3° | −29.7° | −26.3° | −25.3° | −26.5° | −27.0° | −26.8° | −27.1° | −24.7° | −29.3° | ||
Northern circulation | Maximum θN | −37.3° | −38.5° | −37.8° | −35.4° | −31.5° | −30.6° | −29.9° | −30.6° | −31.0° | −32.2° | −33.8° | −36.6° | |
Minimum θN | 30.4° | 29.9° | 30.0° | 27.9° | 27.9° | 30.0° | 40.2° | 41.6° | 40.8° | 38.8° | 34.6° | 31.9° | ||
MERRA2 | ITCZ position | Maximum θITCZ | −11.4° | −11.1° | −6.8° | 2.9° | 9.1° | 20.0° | 20.8° | 19.6° | 16.7° | 10.9° | 5.3° | −4.3° |
Minimum θITCZ | −17.0° | −15.8° | −11.5° | −5.0° | 3.9° | 10.7° | 14.0° | 14.5° | 12.6° | 7.5° | −4.6° | −15.2° | ||
Southern circulation | Maximum θS | −27.8° | −30.6° | −30.5° | −27.3° | −25.2° | −24.9° | −25.6° | −25.6° | −25.1° | −24.5° | −23.0° | −25.4° | |
Minimum θS | −35.7° | −37.7° | −36.5° | −34.3° | −29.7° | −28.8° | −28.5° | −28.2° | −29.7° | −30.4° | −31.9° | −34.4° | ||
Northern circulation | Maximum θN | 30.4° | 29.5° | 28.1° | 27.6° | 26.6° | 32.1° | 40.8° | 42.6° | 41.7° | 39.1° | 34.8° | 32.2° | |
Minimum θN | 26.7° | 24.7° | 23.7° | 23.0° | 22.0° | 21.3° | 23.9° | 31.1° | 32.9° | 29.8° | 28.6° | 26.8° |
Max P | Centroid | ψ | ΨKE | |||
---|---|---|---|---|---|---|
Correlation coefficient | −0.58 | −0.53 | −0.51 | −0.31 | −0.62 | −0.35 |
Slope (°/PW) | −6.65 ± 1.43 | −1.46 ± 0.37 | −3.04 ± 0.79 | −2.78 ± 1.30 | −6.82 ± 1.32 | −2.15 ± 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Q.; Liu, C.; Zhang, Y.; Qiu, J.; Li, J.; Xue, Y.; Cao, N.; Liao, X.; Yang, K.; Zheng, R.; et al. Consistency of Changes in the Ascending and Descending Positions of the Hadley Circulation Using Different Methods. Atmosphere 2025, 16, 367. https://doi.org/10.3390/atmos16040367
Su Q, Liu C, Zhang Y, Qiu J, Li J, Xue Y, Cao N, Liao X, Yang K, Zheng R, et al. Consistency of Changes in the Ascending and Descending Positions of the Hadley Circulation Using Different Methods. Atmosphere. 2025; 16(4):367. https://doi.org/10.3390/atmos16040367
Chicago/Turabian StyleSu, Qianye, Chunlei Liu, Yu Zhang, Juliao Qiu, Jiandong Li, Yufeng Xue, Ning Cao, Xiaoqing Liao, Ke Yang, Rong Zheng, and et al. 2025. "Consistency of Changes in the Ascending and Descending Positions of the Hadley Circulation Using Different Methods" Atmosphere 16, no. 4: 367. https://doi.org/10.3390/atmos16040367
APA StyleSu, Q., Liu, C., Zhang, Y., Qiu, J., Li, J., Xue, Y., Cao, N., Liao, X., Yang, K., Zheng, R., Liang, Z., Jin, L., Huang, K., Jin, K., & Zhou, N. (2025). Consistency of Changes in the Ascending and Descending Positions of the Hadley Circulation Using Different Methods. Atmosphere, 16(4), 367. https://doi.org/10.3390/atmos16040367