The Role of Atmospheric Circulation Patterns in Water Storage of the World’s Largest High-Altitude Landslide-Dammed Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Settings
2.2. Data
2.2.1. Landsat Images
2.2.2. AW3D-5m DEM
2.2.3. GLOBathy Global Lakes Bathymetry Dataset
2.2.4. Runoff Data
2.2.5. Climate Data
2.3. Methods
2.3.1. LSA Extraction
2.3.2. Accuracy Validation of LSA Extraction
2.3.3. Reconstruction of the Temporal Variation of Absolute LWS
- 1.
- The lake boundary was selected, and a 100 m buffer was created to define the DEM elevation search range.
- 2.
- Extract contour lines using AW3D-5m DEM data, merge regions with the same elevation, and calculate the corresponding area for each elevation. The minimum elevation was set as H0, and the corresponding area was set as SAW3D.
- 3.
- The elevation was increased from H0 in 1 m increments up to 15 m, determining the relationship between each elevation Hi and the corresponding area SAW3D+i (where i = 1, 2, …, 15), as shown in Table 4 (Columns 1 and 3).
- 4.
- Using the elevation-area relationship, an empirical formula [80] (Equation (6)) was applied to calculate the variation in water storage for each Hi relative to H0. This formula has been widely used in lake water storage assessments and is especially useful in remote areas lacking historical hydrological data [10,81,82]. A linear fitted formula (area–storage curve) was then established as ΔV = aS + b (Figure 7), as shown in Table 4 (Columns 3 and 5).
- 5.
- The annually extracted LSA and SG were substituted into the fitted formula from Step 4 to calculate the water storage change relative to SAW3D as well as the volume change ∆VG-A between SG and SAW3D. Finally, we added the annual water storage change ∆VG-A and the underwater volume VG to determine the absolute LWS for each year.
Elevation (m Above Sea Level) | Change in Lake Area per 1 m Elevation (km2) | Surface Area of Lake Sarez (km2) | Change in Water Storage at 1 m Interval (109 m3) | Change in Water Storage (109 m3) |
---|---|---|---|---|
3233 | 0 | 87.5631 | 0 | 0 |
3234 | 0.4853 | 88.0484 | 0.0878 | 0.0878 |
3235 | 0.4443 | 88.4927 | 0.0883 | 0.1761 |
3236 | 0.3681 | 88.8608 | 0.0887 | 0.2648 |
3237 | 0.2873 | 89.1481 | 0.0890 | 0.3538 |
3238 | 0.2580 | 89.4061 | 0.0893 | 0.4430 |
3239 | 0.2376 | 89.6437 | 0.0895 | 0.5326 |
3240 | 0.2294 | 89.8731 | 0.0898 | 0.6223 |
3241 | 0.2452 | 90.1183 | 0.0900 | 0.7123 |
3242 | 0.2401 | 90.3584 | 0.0902 | 0.8026 |
3243 | 0.2429 | 90.6013 | 0.0905 | 0.8930 |
3244 | 0.2451 | 90.8464 | 0.0907 | 0.9838 |
3245 | 0.2321 | 91.0785 | 0.0910 | 1.0747 |
3246 | 0.2475 | 91.3260 | 0.0912 | 1.1659 |
3247 | 0.2471 | 91.5731 | 0.0915 | 1.2574 |
2.3.4. Water Balance Model of Lake Sarez
2.3.5. Cross-Wavelet Transform and Wavelet Coherence
3. Results
3.1. LSA and Absolute LWS Changes of Lake Sarez
3.2. Dominant Factors of LWS Changes
3.3. Climatic and Atmospheric Drivers of IRO Variations in Lake Sarez
3.3.1. Multi-Scale Correlation Analysis of Basin Climatic Factors and IRO in Lake Sarez
3.3.2. Multi-Scale Teleconnection Analysis of Atmospheric Circulation and IRO in Lake Sarez
4. Discussion
4.1. Innovation and Uncertainty in the Reconstruction of Absolute LWS for Landslide-Dammed Lakes
4.2. Insights into Lake Sarez’s Absolute LWS Changes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.; Wang, L.; Zhong, X.; Yao, T.; Qi, J.; Wang, Y.; Xue, Y. Quantifying the Major Drivers for the Expanding Lakes in the Interior Tibetan Plateau. Sci. Bull. 2022, 67, 474–478. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Ye, Z.; Li, Y.; Zhang, Q. Recent Lake Area Changes in Central Asia. Sci. Rep. 2019, 9, 16277. [Google Scholar] [CrossRef] [PubMed]
- El-Bouhali, B.; Mhamed, A.; Ech-Chahdi, K.E.O. Changes in Water Surface Area of the Middle Atlas-Morocco Lakes: A Response to Climate and Human Effects. Int. J. Eng. Geosci. 2024, 9, 221–232. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.K.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.; et al. Response of Tibetan Plateau Lakes to Climate Change: Trends, Patterns, and Mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global Lake Responses to Climate Change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Wang, W.; Jiao, A.; Shan, Q.; Wang, Z.; Kong, Z.; Ling, H.; Deng, X. Expansion of Typical Lakes in Xinjiang under the Combined Effects of Climate Change and Human Activities. Front. Environ. Sci. 2022, 10, 1015543. [Google Scholar] [CrossRef]
- Tan, C.; Guo, B.; Kuang, H.; Yang, H.; Ma, M. Lake Area Changes and Their Influence on Factors in Arid and Semi-Arid Regions along the Silk Road. Remote Sens. 2018, 10, 595. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Y.; Liu, T.; Li, J.; Wang, Z.; Zan, C.; Duan, Y. Analysis of Water Balance Change and Influencing Factors in Issyk-Kul Lake in Recent 60 Years. AZR 2022, 39, 1576–1587. [Google Scholar] [CrossRef]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as Sentinels of Climate Change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Bolch, T.; Chen, W.; Crétaux, J.-F. Comprehensive Estimation of Lake Volume Changes on the Tibetan Plateau during 1976–2019 and Basin-Wide Glacier Contribution. Sci. Total Environ. 2021, 772, 145463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; An, C.; Zheng, L.; Liu, L.; Zhang, W.; Lu, C.; Zhang, Y. Assessment of Lake Area in Response to Climate Change at Varying Elevations: A Case Study of Mt. Tianshan, Central Asia. Sci. Total Environ. 2023, 869, 161665. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, L.; Ma, Q.; Chen, H.; Liu, C.; Zubaida, M. The Consecutive Lake Group Water Storage Variations and Their Dynamic Response to Climate Change in the Central Tibetan Plateau. J. Hydrol. 2021, 601, 126615. [Google Scholar] [CrossRef]
- Jungkeit-Milla, K.; Pérez-Cabello, F.; De Vera-García, A.V.; Galofré, M.; Valero-Garcés, B. Lake Surface Water Temperature in High Altitude Lakes in the Pyrenees: Combining Satellite with Monitoring Data to Assess Recent Trends. Sci. Total Environ. 2024, 933, 173181. [Google Scholar] [CrossRef]
- Drenkhan, F.; Guardamino, L.; Huggel, C.; Frey, H. Current and Future Glacier and Lake Assessment in the Deglaciating Vilcanota-Urubamba Basin, Peruvian Andes. Glob. Planet. Change 2018, 169, 105–118. [Google Scholar] [CrossRef]
- Qiao, B.; Zhu, L.; Wang, J.; Ju, J.; Ma, Q.; Liu, C. Estimation of Lakes Water Storage and Their Changes on the Northwestern Tibetan Plateau Based on Bathymetric and Landsat Data and Driving Force Analyses. Quat. Int. 2017, 454, 56–67. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, F.; Shi, J.; Zhao, Q.; Liu, C.; Tan, M.L.; Kung, H.-T.; Gao, G.; Li, G. Calculation of Bosten Lake Water Storage Based on Multiple Source Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5100511. [Google Scholar] [CrossRef]
- Huang, W.; Duan, W.; Chen, Y. Unravelling Lake Water Storage Change in Central Asia: Rapid Decrease in Tail-End Lakes and Increasing Risks to Water Supply. J. Hydrol. 2022, 614, 128546. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Yang, L.; Fang, H. Monitoring Variations of Inland Lakes in the Arid Region of Central Asia. Front. Earth Sci. 2012, 6, 147–156. [Google Scholar] [CrossRef]
- Navruzshoev, H.; Sagintayev, Z.; Kabutov, H.; Nekkadamova, N.M.; Vosidov, F.; Khalimov, A. Surface Area Dynamics of Gunt River Basin Mountain Lakes (Pamir, Tajikistan). Cent. Asian J. Water Res. 2022, 8, 141–152. [Google Scholar] [CrossRef]
- Zheng, G.; Bao, A.; Li, J.; Zhang, G.; Xie, H.; Guo, H.; Jiang, L.; Chen, T.; Chang, C.; Chen, W. Sustained Growth of High Mountain Lakes in the Headwaters of the Syr Darya River, Central Asia. Glob. Planet. Change 2019, 176, 84–99. [Google Scholar] [CrossRef]
- Du, W.; Pan, Y.; Li, J.; Bao, A.; Chai, H.; Yuan, Y.; Cheng, C. Glacier Retreat Leads to the Expansion of Alpine Lake Karakul Observed Via Remote Sensing Water Volume Time Series Reconstruction. Atmosphere 2023, 14, 1772. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, N.; Yang, X.; Mao, Z. The Dynamic Changes of Lake Issyk-Kul from 1958 to 2020 Based on Multi-Source Satellite Data. Remote Sens. 2022, 14, 1575. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, B.; Wan, W.; Xie, H.; Fang, Y.; Chen, X.; Li, H.; Fang, W.; Zhang, G.; Tao, M.; et al. A New Digital Lake Bathymetry Model Using the Step-Wise Water Recession Method to Generate 3D Lake Bathymetric Maps Based on DEMs. Water 2019, 11, 1151. [Google Scholar] [CrossRef]
- Jawak, S.D.; Vadlamani, S.S.; Luis, A.J. A Synoptic Review on Deriving Bathymetry Information Using Remote Sensing Technologies: Models, Methods and Comparisons. Adv. Remote. Sens. 2015, 04, 147–162. [Google Scholar] [CrossRef]
- Khazaei, B.; Read, L.K.; Casali, M.; Sampson, K.M.; Yates, D.N. GLOBathy, the Global Lakes Bathymetry Dataset. Sci. Data 2022, 9, 36. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, F.; Liu, C. A Comparison of Multiple DEMs and Satellite Altimetric Data in Lake Volume Monitoring. Remote Sens. 2024, 16, 974. [Google Scholar] [CrossRef]
- Lei, Y.; Tian, L.; Bird, B.W.; Hou, J.; Ding, L.; Oimahmadov, I.; Gadoev, M. A 2540-Year Record of Moisture Variations Derived from Lacustrine Sediment (Sasikul Lake) on the Pamir Plateau. Holocene 2014, 24, 761–770. [Google Scholar] [CrossRef]
- Mętrak, M.; Szwarczewski, P.; Bińka, K.; Rojan, E.; Karasiński, J.; Górecki, G.; Suska-Malawska, M. Late Holocene Development of Lake Rangkul (Eastern Pamir, Tajikistan) and Its Response to Regional Climatic Changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 521, 99–113. [Google Scholar] [CrossRef]
- Costa, J.E.; Schuster, R.L. Documented Historical Landslide Dams from Around the World; US Geological Survey: Riston, VA, USA, 1991; Volume 91.
- Stone, R. Peril in the Pamirs. Science 2009, 326, 1614–1617. [Google Scholar] [CrossRef] [PubMed]
- Nardini, O.; Confuorto, P.; Intrieri, E.; Montalti, R.; Montanaro, T.; Robles, J.G.; Poggi, F.; Raspini, F. Integration of Satellite SAR and Optical Acquisitions for the Characterization of the Lake Sarez Landslides in Tajikistan. Landslides 2024, 21, 1385–1401. [Google Scholar] [CrossRef]
- Schuster, R.L. Usoi Landslide Dam and Lake Sarez, Pamir Mountains, Tajikistan. Environ. Eng. Geosci. 2004, 10, 151–168. [Google Scholar] [CrossRef]
- Ambraseys, N.; Bilham, R. The Sarez-Pamir Earthquake and Landslide of 18 February 1911. Seismol. Res. Lett. 2012, 83, 294–314. [Google Scholar] [CrossRef]
- Ischuk, A.R. Usoy Natural Dam: Problem of Security (Lake Sarez, Pamir Mountains, Tadjikistan). Ital. J. Eng. Geol. Environ. 2006, 1, 189–192. [Google Scholar]
- Metzger, S.; Schurr, B.; Ratschbacher, L.; Sudhaus, H.; Kufner, S.-K.; Schöne, T.; Zhang, Y.; Perry, M.; Bendick, R. The 2015 Mw7.2 Sarez Strike-Slip Earthquake in the Pamir Interior: Response to the Underthrusting of India’s Western Promontory. Tectonics 2017, 36, 2407–2421. [Google Scholar] [CrossRef]
- Tu, R.; Wang, X.; Xu, N.; Han, J.; Wang, T.; Wang, W.; Zhao, F.; Bayindalai; Majid Shonazarovich, G. Integrated Study of Water Levels and Water Storage Variations Using GNSS-MR and Remote Sensing: A Case Study of Sarez Lake, the World’s Highest-Altitude Dammed Lake. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103854. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the Volume and Age of Water Stored in Global Lakes Using a Geo-Statistical Approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhang, X.; Fang, H. Monitoring and Dynamic Analysis of Water Level of Sarez Lake by Remote Sensing Technology Based on ICESat-1/2 Laser Altimeter System. Bull. Surv. Mapp. 2021, 1, 29–34. [Google Scholar] [CrossRef]
- Tang, H.; Lu, S.; Ali Baig, M.H.; Li, M.; Fang, C.; Wang, Y. Large-Scale Surface Water Mapping Based on Landsat and Sentinel-1 Images. Water 2022, 14, 1454. [Google Scholar] [CrossRef]
- Getaneh, Y.; Abera, W.; Abegaz, A.; Tamene, L. Surface Water Area Dynamics of the Major Lakes of Ethiopia (1985–2023): A Spatio-Temporal Analysis. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104007. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Automated Cloud, Cloud Shadow, and Snow Detection in Multitemporal Landsat Data: An Algorithm Designed Specifically for Monitoring Land Cover Change. Remote Sens. Environ. 2014, 152, 217–234. [Google Scholar] [CrossRef]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II–4, 71–76. [Google Scholar] [CrossRef]
- Santillan, J.R.; Makinano-Santillan, M.; Makinano, R.M. Vertical Accuracy Assessment of ALOS World 3D-30M Digital Elevation Model over Northeastern Mindanao, Philippines. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5374–5377. [Google Scholar]
- Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J.; Yan, B.; Yue, L.; Wang, L. Global DEMs Vary from One to Another: An Evaluation of Newly Released Copernicus, NASA and AW3D30 DEM on Selected Terrains of China Using ICESat-2 Altimetry Data. Int. J. Digit. Earth 2022, 15, 1149–1168. [Google Scholar] [CrossRef]
- Liu, K.; Song, C.; Zhan, P.; Luo, S.; Fan, C. A Low-Cost Approach for Lake Volume Estimation on the Tibetan Plateau: Coupling the Lake Hypsometric Curve and Bottom Elevation. Front. Earth Sci. 2022, 10, 925944. [Google Scholar] [CrossRef]
- Hales, R.C.; Nelson, E.J.; Souffront, M.; Gutierrez, A.L.; Prudhomme, C.; Kopp, S.; Ames, D.P.; Williams, G.P.; Jones, N.L. Advancing Global Hydrologic Modeling with the GEOGloWS ECMWF Streamflow Service. J. Flood Risk Manag. 2022, 18, e12859. [Google Scholar] [CrossRef]
- Dai, A. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Change 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Stigter, E.E.; Yao, T.; Immerzeel, W.W. Climate Change Decisive for Asia’s Snow Meltwater Supply. Nat. Clim. Change 2021, 11, 591–597. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.; Gupta, H.; Goyal, M.K.; Joshi, N. Evaluation of Precipitation Datasets Available on Google Earth Engine over India. Int. J. Climatol. 2021, 41, 4844–4863. [Google Scholar] [CrossRef]
- Tian, W.; Liu, X.; Wang, K.; Bai, P.; Liu, C. Estimation of Reservoir Evaporation Losses for China. J. Hydrol. 2021, 596, 126142. [Google Scholar] [CrossRef]
- Wang, X.; Wu, G. The Analysis of the Relationship between the Spatial Modes of Summer Precipitation Anomalies over China and the General Circulation. Chin. J. Atmos. Sci. 1997, 21, 161–169. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nat. Clim. Change 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.; Shen, Y.; Li, B. Tracking Climate Change in Central Asia through Temperature and Precipitation Extremes. J. Geogr. Sci. 2019, 29, 3–28. [Google Scholar] [CrossRef]
- Trenberth, K.E. The Definition of El Nino. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2778. [Google Scholar] [CrossRef]
- Mariotti, A. How ENSO Impacts Precipitation in Southwest Central Asia. Geophys. Res. Lett. 2007, 34, 370–381. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, T. Agricultural Drought over Water-Scarce Central Asia Aggravated by Internal Climate Variability. Nat. Geosci. 2023, 16, 154–161. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1080. [Google Scholar] [CrossRef]
- Fang, K.; Chen, F.; Sen, A.K.; Davi, N.; Huang, W.; Li, J.; Seppä, H. Hydroclimate Variations in Central and Monsoonal Asia over the Past 700 Years. PLoS ONE 2014, 9, e102751. [Google Scholar] [CrossRef]
- Hurrell, J.W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Liu, X.; Mao, X. Vegetation Dynamics in Arid Central Asia over the Past Two Millennia Linked to NAO Variability and Solar Forcing. Quat. Sci. Rev. 2023, 310, 108134. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green. Wave Effect) of Natural Vegetation; NASA: Washington, DC, USA, 1974.
- Zou, Z.; Dong, J.; Menarguez, M.A.; Xiao, X.; Qin, Y.; Doughty, R.B.; Hooker, K.V.; David Hambright, K. Continued Decrease of Open Surface Water Body Area in Oklahoma during 1984–2015. Sci. Total Environ. 2017, 595, 451–460. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Chen, B.; Wang, J.; Ye, H.; et al. Gainers and Losers of Surface and Terrestrial Water Resources in China during 1989–2016. Nat. Commun. 2020, 11, 3471. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Dong, J.; Xiao, X.; Liu, R.; Zou, Z.; Zhao, G.; Ge, Q. Continuous Monitoring of Lake Dynamics on the Mongolian Plateau Using All Available Landsat Imagery and Google Earth Engine. Sci. Total Environ. 2019, 689, 366–380. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Duan, W.; Chen, Y. Rapidly Declining Surface and Terrestrial Water Resources in Central Asia Driven by Socio-Economic and Climatic Changes. Sci. Total Environ. 2021, 784, 147193. [Google Scholar] [CrossRef]
- Xiao, Z.; Ding, M.; Li, L.; Nie, Y.; Pan, J.; Li, R.; Liu, L.; Zhang, Y. Divergent Changes of Surface Water and Its Climatic Drivers in the Headwater Region of the Three Rivers on the Qinghai-Tibet Plateau. Ecol. Indic. 2024, 158, 111615. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A Global, High-Resolution (30-m) Inland Water Body Dataset for 2000: First Results of a Topographic–Spectral Classification Algorithm. Int. J. Digit. Earth 2016, 9, 113–133. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Generation of the 30 M-Mesh Global Digital Surface Model by ALOS PRISM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B4, 157–162. [Google Scholar] [CrossRef]
- Li, J.; Warner, T.A.; Wang, Y.; Bai, J.; Bao, A. Mapping Glacial Lakes Partially Obscured by Mountain Shadows for Time Series and Regional Mapping Applications. Int. J. Remote Sens. 2019, 40, 615–641. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Liang, J.; Huang, W.; Xu, W.; Li, B.; Wang, J. Extraction of Water Body Information from Remote Sensing Imagery While Considering Greenness and Wetness Based on Tasseled Cap Transformation. Remote Sens. 2022, 14, 3001. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Jiang, C.; Zhao, Y.; Li, H.; Lu, D.; Qin, K.; Chen, D.; Liu, Y.; Sun, Y.; et al. Comparison of Lake Area Extraction Algorithms in Qinghai Tibet Plateau Leveraging Google Earth Engine and Landsat-9 Data. Remote Sens. 2022, 14, 4612. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Tian, B.; Li, Z. Extraction of Glacial Lake Outlines in Tibet Plateau Using Landsat 8 Imagery and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4002–4009. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L. Modeling and Analysis of Lake Water Storage Changes on the Tibetan Plateau Using Multi-Mission Satellite Data. Remote Sens. Environ. 2013, 135, 25–35. [Google Scholar] [CrossRef]
- Taube, C.M.; Schneider, J.C. Three Methods for Computing the Volume of a Lake. In Manual of Fisheries Survey Methods II: With Periodic Updates; Michigan Department of Natural Resources, Fisheries Division: Lansing, MI, USA, 2000; pp. 175–179. [Google Scholar]
- Qiao, B.; Zhu, L.; Yang, R. Temporal-Spatial Differences in Lake Water Storage Changes and Their Links to Climate Change throughout the Tibetan Plateau. Remote Sens. Environ. 2019, 222, 232–243. [Google Scholar] [CrossRef]
- Wu, G.; Xiao, X.; Liu, Y. Satellite-Based Surface Water Storage Estimation: Its History, Current Status, and Future Prospects. IEEE Geosci. Remote Sens. Mag. 2022, 10, 10–31. [Google Scholar] [CrossRef]
- Yue, H.; Liu, Y. Water Balance and Influence Mechanism Analysis: A Case Study of Hongjiannao Lake, China. Environ. Monit. Assess. 2021, 193, 219. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xie, M.; Wu, Y. Quantitative Analysis of Lake Area Variations and the Influence Factors from 1971 to 2004 in the Nam Co Basin of the Tibetan Plateau. Chin. Sci. Bull. 2010, 55, 1294–1303. [Google Scholar] [CrossRef]
- Souza Echer, M.P.; Echer, E.; Nordemann, D.J.; Rigozo, N.R.; Prestes, A. Wavelet Analysis of a Centennial (1895–1994) Southern Brazil Rainfall Series (Pelotas, 31°46′19″S 52°20′ 33″W). Clim. Change 2008, 87, 489–497. [Google Scholar] [CrossRef]
- Tomás, R.; Li, Z.; Lopez-Sanchez, J.M.; Liu, P.; Singleton, A. Using Wavelet Tools to Analyse Seasonal Variations from InSAR Time-Series Data: A Case Study of the Huangtupo Landslide. Landslides 2016, 13, 437–450. [Google Scholar] [CrossRef]
- Anusasananan, P. Wavelet Spectrum Analysis of PM10 Data in Bangkok, Thailand. J. Phys. Conf. Ser. 2019, 1380, 012017. [Google Scholar] [CrossRef]
- Huang, K.; Ma, L.; Abuduwaili, J. A Study of the Water Level Variation of Lake Balkhash: Its Influencing Factors Based on Wavelet Analysis. Arid. Zone Res. 2020, 37, 570–579. [Google Scholar]
- Nalley, D.; Adamowski, J.; Biswas, A.; Gharabaghi, B.; Hu, W. A Multiscale and Multivariate Analysis of Precipitation and Streamflow Variability in Relation to ENSO, NAO and PDO. J. Hydrol. 2019, 574, 288–307. [Google Scholar] [CrossRef]
- Sinyukovich, V.N.; Georgiadi, A.G.; Groisman, P.Y.; Borodin, O.O.; Aslamov, I.A. The Variation in the Water Level of Lake Baikal and Its Relationship with the Inflow and Outflow. Water 2024, 16, 560. [Google Scholar] [CrossRef]
- Guo, L.; Xia, Z.; Zhou, H.; Huang, F.; Yan, B. Hydrological Changes of the Ili River in Kazakhstan and the Possible Causes. J. Hydrol. Eng. 2015, 20, 05015006. [Google Scholar] [CrossRef]
- Salamat, A.U.; Abuduwaili, J.; Shaidyldaeva, N. Impact of Climate Change on Water Level Fluctuation of Issyk-Kul Lake. Arab. J. Geosci. 2015, 8, 5361–5371. [Google Scholar] [CrossRef]
- Lindsey, R.; Dahlman, L. Climate Change: Global Temperature. Clim. Gov. 2020, 16. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 10 July 2024).
- Panyushkina, I.P.; Meko, D.M.; Macklin, M.G.; Toonen, W.H.J.; Mukhamаdiev, N.S.; Konovalov, V.G.; Ashikbaev, N.Z.; Sagitov, A.O. Runoff Variations in Lake Balkhash Basin, Central Asia, 1779–2015, Inferred from Tree Rings. Clim. Dyn. 2018, 51, 3161–3177. [Google Scholar] [CrossRef]
- Kong, L.; Ma, L.; Li, Y.; Abuduwaili, J.; Zhang, J. Assessing the Intensity of the Water Cycle Utilizing a Bayesian Estimator Algorithm and Wavelet Coherence Analysis in the Issyk-Kul Basin of Central Asia. J. Hydrol. Reg. Stud. 2024, 52, 101680. [Google Scholar] [CrossRef]
- Fallah, B.; Didovets, I.; Rostami, M.; Hamidi, M. Climate Change Impacts on Central Asia: Trends, Extremes and Future Projections. Int. J. Climatol. 2024, 44, 3191–3213. [Google Scholar] [CrossRef]
- Finaev, A.F.; Shiyin, L.; Weijia, B.; Li, J. Climate Change and Water Potential of the Pamir Mountains. Geogr. Environ. Sustain. 2016, 9, 88–105. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Li, Z.; Liu, Y.; Huang, W.; Liu, X.; Feng, M. Analysis of the Impact of Global Climate Change on Dryland Areas. Adv. Earth Sci. 2022, 37, 111. [Google Scholar] [CrossRef]
- Knoche, M.; Merz, R.; Lindner, M.; Weise, S. Bridging Glaciological and Hydrological Trends in the Pamir Mountains, Central Asia. Water 2017, 9, 422. [Google Scholar] [CrossRef]
Index | Linkage |
---|---|
Tibetan Plateau Index_B (TPI) [54] | The Tibetan Plateau influences the climate of surrounding regions through atmospheric circulation, affecting precipitation distribution in Central Asia [55,56]. |
NINO3.4 zone sea surface temperature distance level index (NINO3.4) [57] | ENSO events modulated by the NINO3.4 index impact atmospheric convection and moisture transport, affecting precipitation variability in Central Asia [58,59]. |
Pacific Decadal Oscillation (PDO) [60] | The PDO phases correlate with long-term drought and wet periods in Central Asia, influencing water resource availability [61]. |
North Atlantic Oscillation (NAO) [62] | The NAO affects the winter climate in Central Asia, particularly impacting temperature and snow cover [63]. |
Data | Time Range | Resolution | Source |
---|---|---|---|
Landsat images | 1992–2023 | 30 m | GEE https://developers.google.com/ (accessed on 20 February 2024) |
TerraClimate dataset | 1992–2023 | 1/24° (~4 km) | GEE https://develoers.google.com/ (accessed on 25 May 2024) |
AW3D-5m DEM | — | 5 m | JAXA https://www.eorc.jaxa.jp/ (accessed on 27 February 2024) |
GLOBathy dataset | — | 1″ (~30 m) | [25] |
GEOGloWS service | 1992–2023 | — | ECMWF https://apps.geglows.org/ (accessed on 5 April 2024) |
NINO3.4, PDO, NAO | 1992–2023 | — | NOAA https://www.cpc.ncep.noaa.gov/ (accessed on 25 May 2024) |
TPI | 1992–2023 | — | National Climate Centre https://www.cma.gov.cn/ (accessed on 25 May 2024) |
Observed annual maximum water level | 2005–2023 | — | On-site monitoring |
Observed inflow and outflow runoff | 2023 | — | On-site monitoring |
Sample Points | Google Earth Reference Data | Total | |
---|---|---|---|
Water | Non-Water | ||
Water | 245 | 5 | 250 |
Non-Water | 10 | 240 | 250 |
Total | 255 | 245 | 500 |
Factor | Value | Contribution | Contribution Rate |
---|---|---|---|
Annual Average Precipitation | 216.00 mm | 0.0193 km3 | 0.50% |
Annual Average Evapotranspiration | 207.34 mm | 0.0185 km3 | 0.48% |
Annual Average Inflow | 66.54 m3/s | 2.0984 km3 | 54.57% |
Annual Average Outflow | 54.20 m3/s | 1.7093 km3 | 44.45% |
Lake Surface Area | 89.29 km2 | ||
Water Balance Change | 0.3899 km3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Li, Y.; Zhang, J.; Kong, L.; Abuduwaili, J.; Gulayozov, M.; Kodirov, A.; Ma, L. The Role of Atmospheric Circulation Patterns in Water Storage of the World’s Largest High-Altitude Landslide-Dammed Lake. Atmosphere 2025, 16, 209. https://doi.org/10.3390/atmos16020209
Deng X, Li Y, Zhang J, Kong L, Abuduwaili J, Gulayozov M, Kodirov A, Ma L. The Role of Atmospheric Circulation Patterns in Water Storage of the World’s Largest High-Altitude Landslide-Dammed Lake. Atmosphere. 2025; 16(2):209. https://doi.org/10.3390/atmos16020209
Chicago/Turabian StyleDeng, Xuefeng, Yizhen Li, Jingjing Zhang, Lingxin Kong, Jilili Abuduwaili, Majid Gulayozov, Anvar Kodirov, and Long Ma. 2025. "The Role of Atmospheric Circulation Patterns in Water Storage of the World’s Largest High-Altitude Landslide-Dammed Lake" Atmosphere 16, no. 2: 209. https://doi.org/10.3390/atmos16020209
APA StyleDeng, X., Li, Y., Zhang, J., Kong, L., Abuduwaili, J., Gulayozov, M., Kodirov, A., & Ma, L. (2025). The Role of Atmospheric Circulation Patterns in Water Storage of the World’s Largest High-Altitude Landslide-Dammed Lake. Atmosphere, 16(2), 209. https://doi.org/10.3390/atmos16020209