Socioeconomic and Health Impacts of Dust Storms in Southwest Iran
Abstract
:1. Introduction
2. Study Area
3. Material and Methods
3.1. Data
3.2. Dust Storms Frequency and Wetland Surface Area
3.3. Socio-Economic Analysis
3.3.1. Human Health Cost Analysis
3.3.2. Agriculture Cost Analysis
3.3.3. Migration Cost Analysis
4. Results
4.1. Dust Frequency
Source | Region | Reference |
---|---|---|
Local | Howeizeh wetland | Malamiri et al. [59] |
East Zohreh and East Jarrahi sabkha | Rashki et al. (2021) [5]/Abyat et al. (2019) [102] | |
Malhe playa | Heidarian et al. (2018) [73] | |
Gofer dry land | Malamiri et al. (2022) [6] | |
Shlamcheh/Khoramshar desert | Broomandi et al. (2017) [56] | |
External | Iraq | Zarasvandi et al. (2011) [56] |
Kuwait | Hamzeh et al. (2021) [13] | |
Arabian Peninsula | Hamzeh et al. (2021) [10] | |
Syria | Salmabadi et al. (2020) [9] | |
Jordan | Salmabadi et al. (2020) [9] |
Location | Reference | Monitoring Years | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total SDS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
West Iran | Present study | 18 | 0.5 | 3.2 | 5.2 | 4.9 | 7.8 | 8.5 | 7.1 | 2.2 | 2.2 | 1.1 | 0.4 | 0.4 | 43.5 |
Kuwait | Alshemmari et al. 2013 [91] | 19 | 0.9 | 1.4 | 2.1 | 3.3 | 3.7 | 4.5 | 4.6 | 1.9 | 0.6 | 1.4 | 0.3 | 1.1 | 25.8 |
Bahrain | Al-Dousari et al. 2020 [20] | 33 | 0.1 | 0.3 | 0.5 | 0.6 | 0.5 | 1.4 | 1.5 | 0.2 | 0.3 | 0 | 0.1 | 0.1 | 5.6 |
Qatar | Subramaniam et al. 2015 [12] | 15 | 0.4 | 0.5 | 0.7 | 0.7 | 0.4 | 1.7 | 1.4 | 0.2 | 0.1 | 0.3 | 0.4 | 0.1 | 7.1 |
Abu Dhabi | Al-Ghadban et al. 1999 [11] | 6 | 0.4 | 0.3 | 0.6 | 0.1 | 0.4 | 0.4 | 0.7 | 0 | 0.1 | 0 | 0.2 | 0.7 | 3.9 |
4.2. Socio-Economic Impacts
4.2.1. Human Health
4.2.2. Migration
4.2.3. Agricultural Products
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goudie, A.S. Desert dust and human health disorders. Environ. Int. 2014, 63, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Doronzo, D.M.; Al-Dousari, A.M.; Folch, A.; Waldhauserova, P.D. Preface to the Dust Topical Collection. Arab. J. Geosci. 2016, 9, 468. [Google Scholar] [CrossRef]
- Doronzo, D.M.; Al-Dousari, A. Preface to dust events in the environment. Sustainability 2019, 11, 628. [Google Scholar] [CrossRef]
- Soleimani, Z.; Teymouri, P.; Darvishi-Boloorani, A.; Mesdaghini, A.; Middleton, N.; Griffin, D.W. An overview of bioaerosol load and health impacts associated with dust storms: A focus on the Middle East. Atmos. Environ. 2020, 223, 117187. [Google Scholar] [CrossRef]
- Rashki, A.; Middleton, N.; Goudie, A. Dust storms in Iran—Distribution, causes, frequencies and impacts. Aeolian Res. 2021, 48, 100655. [Google Scholar] [CrossRef]
- Malamiri, N.; Rashki, A.; Hosseinzadeh, S.R.; Kaskaoutis, D.G. Mineralogical, geochemical, and textural characteristics of soil and airborne samples during dust storms in Khuzestan, southwest Iran. Chemosphere 2022, 286, 131879. [Google Scholar] [CrossRef] [PubMed]
- Sufiyan, I.; Magaji, J.I.; Zaharadeed, I. Simulation of Sediment Yield and Supply on Water Flow in Different Subbasins of Terengganu Watershed from 1973–2017. Water Conserv. Manag. 2020, 4, 1–6. [Google Scholar] [CrossRef]
- Al-Dousari, A.; Omar, A.; Al-Hemoud, A.; Aba, A.; Alrashedi, M.; Alrawi, M.; Rashki, A.; Petrov, P.; Ahmed, M.; Al-Dousari, N.; et al. A success story in controlling sand and dust storms hotspots in the middle east. Atmosphere 2022, 13, 1335. [Google Scholar] [CrossRef]
- Salmabadi, H.; Khalidy, R.; Saeedi, M. Transport routes and potential source regions of the Middle Eastern dust over Ahvaz during 2005–2017. Atmos. Res. 2020, 241, 104947. [Google Scholar]
- Hamzeh, N.H.; Kaskaoutis, D.G.; Rashki, A.; Mohammadpour, K. Long-Term Variability of Dust Events in Southwestern Iran and Its Relationship with the Drought. Atmosphere 2021, 12, 1350. [Google Scholar] [CrossRef]
- Al-Ghadban, A.N.; Saeed, T.; Al-Dousari, A.M.; Al-Shemmari, H.; Al-Mutairi, M. Preliminary assessment of the impact of draining of Iraqi Marches on Kuwait’s northern marine environment. Part I. Physical manipulation. Water Sci. Technol. 1999, 40, 75–87. [Google Scholar] [CrossRef]
- Subramaniam, N.; Al-Sudairawi, M.; Al-Dousari, A.; Al-Dousari, N. Probability distribution and extreme value analysis of total suspended particulate matter in Kuwait. Arab. J. Geosci. 2015, 16, 12650. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Karami, S.; Kaskaoutis, D.G.; Tegen, I.; Moradi, M.; Opp, C. Atmospheric dynamics and numerical simulations of six frontal dust storms in the Middle East region. Atmosphere 2021, 12, 125. [Google Scholar] [CrossRef]
- Papi, R.; Attarchi, S.; Attarchi, S.; Darvishi-Boloorani, A.; Samani, N.N. Characterization of Hydrologic Sand and Dust Storm Sources in the Middle East. Sustainability 2022, 14, 15352. [Google Scholar] [CrossRef]
- Gholami, H.; Kordestani, M.D.; Li, J.; Telfer, M.W.; Fathabadi, A. Diverse sources of aeolian sediment revealed in an arid landscape in southeastern Iran using a modified Bayesian un-mixing model. Aeol. Res. 2019, 41, 100547. [Google Scholar] [CrossRef]
- Gholami, H.; Mohammadifar, A.; Pourghasemi, H.R.; Collins, A.L. A new integrated data mining model to map spatial variationin the susceptibility of land to act as a source of aeolian dust. Environ. Sci. Poll. Res. 2020, 27, 42022–42039. [Google Scholar] [CrossRef] [PubMed]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Hadjinicolaou, P.; Howari, F.; Jrrar, A.; et al. Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Jin, Q.; Yang, Z.-L.; Wei, J. Seasonal responses of Indian summer monsoon to dust aerosols in the Middle East, India, and China. J. Clim. 2016, 29, 6329–6349. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Houssos, E.E.; Solmon, F.; Legrand, M.; Rashki, A.; Dumka, U.C.; Francois, P.; Gautam, R.; Singh, R.P. Impact of atmospheric circulation types on southwest Asian dust and Indian summer monsoon rainfall. Atmos. Res. 2018, 201, 189–205. [Google Scholar] [CrossRef]
- Schepanski, K. Transport of Mineral Dust and Its Impact on Climate. Geoscience 2018, 8, 151. [Google Scholar] [CrossRef]
- Jeong, D.Y. Socio-economic costs from yellow dust damages in South Korea. Korean Soc. Sci. J. 2008, 35, 1–29. [Google Scholar]
- Tozer, P.; Leys, J. Dust storms–what do they really cost? Rangel. J. 2013, 35, 131–142. [Google Scholar] [CrossRef]
- Al-Dousari, A.; Al-Nassar, W.; Ahmed, M. Photovoltaic and wind energy: Challenges and solutions in desert regions. In Proceedings of the International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020), E3S Web of Conferences, Kryvyi Rih, Ukraine, 20–22 May 2020; Volume 166, p. 04003. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Daryanoosh, S.M.; Amrane, A.; Polosa, R.; Hopke, P.K.; Goudarzi, G.; Mohammadi, M.J.; Sicard, P.; Armin, H. Impact of Middle Eastern Dust storms on human health. Atmos. Pollut. Res. 2017, 8, 606–613. [Google Scholar] [CrossRef]
- Al-Dousari, A.M.; Ibrahim, M.I.; Al-Dousari, N.; Ahmed, M.; Al-Awadhi, S. Pollen in aeolian dust with relation to allergy and asthma in Kuwait. Aerobiologia 2018, 34, 325–336. [Google Scholar] [CrossRef]
- Goudie, A.S. Dust storms and human health. In Extreme Weather Events and Human Health; Springer: Cham, Switzerland, 2020; pp. 13–24. [Google Scholar]
- Soleimani, Z.; Boloorani, A.D.; Khalifeh, R.; Teymouri, P.; Mesdaghinia, A.; Griffin, D.W. Air pollution and respiratory hospital admissions in Shiraz, Iran, 2009 to 2015. Atmos. Environ. 2019, 209, 233–239. [Google Scholar] [CrossRef]
- Aghababaeian, H.; Ostadtaghizadeh, A.; Ardalan, A.; Asgary, A.; Akbary, M.; Yekaninejad, M.S.; Stephens, C. Global health impacts of dust storms: A systematic review. Environ. Health Insights 2021, 15, 11786302211018390. [Google Scholar] [CrossRef] [PubMed]
- Nkosi, V.; Mathee, A.; Blesic, S.; Kapwata, T.; Kunene, Z.; du Preez, D.J.; Garland, R.; Wright, C.Y. Exploring meteorological conditions and human health impacts during two dust storm events in Northern Cape Province, South Africa: Findings and lessons learnt. Atmosphere 2022, 13, 424. [Google Scholar] [CrossRef]
- Jones, B.A. Dust storms and violent crime. J. Environ. Econ. Manag. 2022, 111, 102590. [Google Scholar] [CrossRef]
- Stefanski, R.; Sivakumar, M.V.K. Impacts of sand and dust storms on agriculture and potential agricultural applications of a SDSWS. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2009; Volume 7, p. 012016. [Google Scholar]
- Pahlavanravi, A.; Miri, A.; Ahmadi, H.; Ekhtesasi, M.R. The impacts of different kinds of dust storms in hot and dry climate, a case study in sistan region. Desert 2012, 17, 15–25. [Google Scholar]
- Gross, A.; Tiwari, S.; Shtein, I.; Erel, R. Direct foliar uptake of phosphorus from desert dust. New Phytol. 2021, 230, 2213–2225. [Google Scholar] [CrossRef] [PubMed]
- Al-Dousari, A.; Al Saleh, A.; Ahmed, M.; Misak, R.; Al Dousari, N.; Al-Shatti, F.; Elrawi, M.; William, T. Off-Road vehicle tracks and grazing points in relation to soil compaction and land degradation. Earth Syst. Environ. 2019, 3, 471–482. [Google Scholar] [CrossRef]
- AlKheder, S.; AlKandari, A. The impact of dust on Kuwait International Airport operations: A case study. Int. J. Environ. Sci. Technol. 2020, 17, 3467–3474. [Google Scholar] [CrossRef]
- Miri, A.; Middleton, N. Long-term impacts of dust storms on transport systems in south-eastern Iran. Nat. Hazards 2022, 114, 291–312. [Google Scholar] [CrossRef]
- Kosmopoulos, P.G.; Kazadzis, S.; El-Askary, H.; Taylor, M.; Gkikas, A.; Proestakis, E.; Kontoes, C.; El-Khayat, M.M. Earth-Observation-Based Estimation and Forecasting of Particulate Matter Impact on Solar Energy in Egypt. Remote Sens. 2018, 10, 1870. [Google Scholar] [CrossRef]
- Gholami, A.; Ameri, M.; Zandi, M.; Ghoachani, R.G.; Eslami, S.; Pierfederici, S. Photovoltaic Potential Assessment and Dust Impacts on Photovoltaic Systems in Iran: Review Paper. IEEE J. Photovolt. 2020, 10, 824–837. [Google Scholar] [CrossRef]
- Castañeda, I.S.; Mulitza, S.; Schefuß, E.; Lopes dos Santos, R.A.; Sinninghe Damsté, J.S.; Schouten, S. Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proc. Natl. Acad. Sci. USA 2009, 106, 20159–20163. [Google Scholar] [CrossRef]
- McLeman, R. Developments in modelling of climate change-related migration. Clim. Change 2013, 117, 599–611. [Google Scholar] [CrossRef]
- Hornbeck, R. Dust Bowl Migrants: Environmental Refugees and Economic Adaptation; Working Paper 27656; University of Chicago and National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Zanganeh, Y.; Boroughani, M. The Analysis of the Relationship Between Dust Phenomenon and Rural Population Changes in Sistan Region. Geogr. Res. 2021, 36, 115–123. (In Farsi) [Google Scholar]
- Griffin, D.W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 2007, 20, 459–477. [Google Scholar] [CrossRef]
- Meibodi, A.E.; Abdoli, G.; Taklif, A.; Morshedi, B. Economic modeling of the regional polices to combat dust phenomenon by using game theory. Procedia Econ. Financ. 2015, 24, 409–418. [Google Scholar] [CrossRef]
- Darvishi-Boloorani, A.; Papi, R.; Soleimani, M.; Karami, L.; Amiri, F.; Samany, N.N. Water bodies changes in Tigris and Euphrates basin has impacted dust storms phenomena. Aeolian Res. 2021, 50, 100698. [Google Scholar] [CrossRef]
- Miri, A.; Maleki, S.; Middleton, N. An investigation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century. Sci. Total Environ. 2021, 757, 143952. [Google Scholar] [CrossRef] [PubMed]
- Miri, A.; Ahmadi, H.; Ekhtesasi, M.R.; Panjehkeh, N.; Ghanbari, A. Environmental and socio-economic impacts of dust storms in Sistan Region, Iran. Int. J. Environ. Stud. 2009, 66, 343–355. [Google Scholar] [CrossRef]
- Parajuli, S.P.; Stenchikov, G.L.; Ukhov, A.; Kim, H. Dust emission modeling using a new high-resolution dust source function in WRF-Chem with implications for air quality. J. Geophys. Res. 2019, 124, 10109–10133. [Google Scholar] [CrossRef]
- Darvishi-Boloorani, A.; Soleimani, M.; Neysani Samany, N.; Bakhtiari, M.; Qareqani, M.; Papi, R.; Mirzaei, S. Assessment of Rural Vulnerability to Sand and Dust Storms in Iran. Atmosphere 2023, 14, 281. [Google Scholar] [CrossRef]
- Middleton, N.; Kang, U. Sand and dust storms: Impact mitigation. Sustainability 2017, 9, 1053. [Google Scholar] [CrossRef]
- Eshghizadeh, M. Determining the critical geographical directions of sand and dust storms in urban areas by remote sensing. Remote Sens. Appl. Soc. Environ. 2021, 23, 100561. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, Y.; Yang, Z.; Zhao, Y. Do adaptive policy adjustments deliver ecosystem-agriculture-economy co-benefits in land degradation neutrality efforts? Evidence from southeast coast of China. Environ. Monit. Assess. 2023, 195, 1215. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Al-Hemoud, A.; Al-Dousari, A.; Misak, R.; Al-Sudairawi, M.; Naseeb, A.; Al-Dashti, H.; Al-Dousari, N. Economic impact and risk assessment of sand and dust storms (SDS) on the oil and gas industry in Kuwait. Sustainability 2019, 11, 200. [Google Scholar] [CrossRef]
- Zarasvandi, A.; Carranza, E.J.M.; Moore, F.; Rastmanesh, F. Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). J. Geochem. Explor. 2011, 111, 138–151. [Google Scholar] [CrossRef]
- Broomandi, P.; Dabir, B.; Bonakdarpour, B.; Rashidi, Y. Identification of dust storm origin in South–West of Iran. J. Environ. Health Sci. Eng. 2017, 15, 1–14. [Google Scholar] [CrossRef]
- Ahmady-Birgani, H.; McQueen, K.G.; Mirnejad, H. Characteristics of mineral dust impacting the Persian Gulf. Aeolian Res. 2018, 30, 11–19. [Google Scholar] [CrossRef]
- Malamiri, N.; Rashki, A.; Hosseinzadeh, S.R.; Gahadi Toroqh, M. Identification of desert dust sources in the West Khuzestan Province using of brightness temperature algorithms. J. Geogr. Environ. Hazards 2019, 8, 97–110. (In Farsi) [Google Scholar]
- Malamiri, N.; Hosseinzadeh, S.R.; Rashki, A.; Gahadi Toroqhi, M. Evaluating the Capability of Various Types of Geomorphological facies in supplying dust sources in the west of Khozestan province-Iran. Res. Earth Sci. 2020, 11, 19–34. [Google Scholar] [CrossRef]
- Mohammadpour, K.; Sciortino, M.; Saligheh, M.; Raziei, T.; Boloorani, A.D. Spatiotemporal regionalization of atmospheric dust based on multivariate analysis of MACC model over Iran. Atmos. Res. 2021, 249, 105322. [Google Scholar] [CrossRef]
- Khaledi, K.S. Economic loss of dust storms in Iran west provinces case study of Ilam, Khuzestan and Kermanshah. Econ. Model. 2013, 7, 105–125. (In Farsi) [Google Scholar]
- Monjezi, N.; Roknedineftekhari, A. Evaluation of Economic Losses of Dust phenomenon on Agricultural Sector (Case Study: Masjed Soleiman County, Khuzestan Province). J. Nat. Environ. Hazards 2021, 10, 145–158. (In Farsi) [Google Scholar]
- Duniway, M.C.; Pfennigwerth, A.A.; Fick, S.E.; Nauman, T.W.; Belnap, J.; Barger, N.N. Wind erosion and dust from US drylands: A review of causes, consequences, and solutions in a changing world. Ecosphere 2019, 10, e02650. [Google Scholar] [CrossRef]
- Barzaman, S.; Shamsipour, A.; Lakes, T.; Faraji, A. Indicators of urban climate resilience (case study: Varamin, Iran). Nat. Hazards 2022, 112, 119–143. [Google Scholar] [CrossRef]
- Shahsavani, A.; Tobías, A.; Querol, X.; Stafoggia, M.; Abdolshahnejad, M.; Mayvaneh, F.; Guo, Y.; Hadei, M.; Hashemi, S.S.; Khosravi, A.; et al. Short-term effects of particulate matter during desert and non-desert dust days on mortality in Iran. Environ. Intern. 2020, 134, 105299. [Google Scholar] [CrossRef]
- Goudarzi, G.; Alavi, N.; Geravandi, S.; Idani, E.; Behrooz, H.R.A.; Babaei, A.A.; Alamdari, F.A.; Dobaradaran, S.; Farhadi, M.; Mohammadi, M.J. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran. Intern. J. Biometeor. 2018, 62, 1075–1083. [Google Scholar] [CrossRef]
- Najmeddin, A.; Keshavarzi, B. Health risk assessment and source apportionment of polycyclic aromatic hydrocarbons associated with PM10 and road deposited dust in Ahvaz metropolis of Iran. Environ. Geochem. Health 2019, 41, 1267–1290. [Google Scholar] [CrossRef]
- Nazarpour, A.; Watts, M.J.; Madhani, A.; Elahi, S. Source, Spatial Distribution and Pollution Assessment of Pb, Zn, Cu, and Pb, Isotopes in urban soils of Ahvaz City, a semi-arid metropolis in southwest Iran. Sci. Rep. 2019, 9, 5349. [Google Scholar] [CrossRef]
- Statistical Yearbook of Iran. Statistical Center of Iran. 2016. Available online: https://nnt.sci.org.ir/sites/Apps/yearbook/Lists/year_book_req/Item/newifs.aspx (accessed on 23 December 2024). (In Farsi).
- Malamiri, N.; Hossenzadeh, S.R.; Khosroshahabadi, R. Assessing the theory of spatial stability of Ergs in Iran, using remote sensing data. J. Arid. Reg. Geogr. Stud. 2017, 7, 23–35. (In Farsi) [Google Scholar]
- Adib, A. Effects of the Karkheh Dam construction on haze generation due to geomorphological changes (in the Khuzestan Province, Southwest of Iran). Water Supply 2022, 22, 2338–2350. [Google Scholar] [CrossRef]
- Rezaei, M.; Farajzadeh, M.; Mielonen, T.; Ghavidel, Y. Analysis of spatio-temporal dust aerosol frequency over Iran based on satellite data. Atmos. Pollut. Res. 2019, 10, 508–519. [Google Scholar] [CrossRef]
- Heidarian, P.; Azhdari, A.; Joudaki, M.; Khatooni, J.D.; Firoozjaei, S.F. Integrating remote sensing, GIS, and sedimentology techniques for identifying dust storm sources: A case study in Khuzestan, Iran. J. Indian Soc. Remote Sens. 2018, 46, 1113–1124. [Google Scholar] [CrossRef]
- Karami, S.; Kaskaoutis, D.G.; Kashani, S.S.; Rahnama, M.; Rashki, A. Evaluation of Nine Operational Models in Forecasting Different Types of Synoptic Dust Events in the Middle East. Geosciences 2021, 11, 458. [Google Scholar] [CrossRef]
- Goudarzi, G.; Sorooshian, A.; Maleki, H. Local and Long-range transport dust storms over the city of Ahvaz: A survey based on spatiotemporal and geometrical properties. Pure Appl. Geophys. 2020, 177, 3979–3997. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Francois, P.; Kosmopoulos, P.G.; Legrand, M. Dust-storm dynamics over Sistan region, Iran: Seasonality, transport characteristics and affected areas. Aeolian Res. 2015, 16, 35–48. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses, R package v. 1.0. 7. 2020. Available online: https://cran.r-project.org/web/packages/factoextra/readme/README.html (accessed on 23 December 2024).
- Josse, J.; Husson, F. missMDA: A package for handling missing values in multivariate data analysis. J. Stat. Softw. 2016, 70, 1–31. [Google Scholar] [CrossRef]
- Ahmadizadeh, S.; Moghaddasi, R.; Mostaan, A. Determination of economic life of varieties of palms” Sayer” in Ahwaz. J. Agric. Econ. Res. 2018, 10, 221–240. (In Farsi) [Google Scholar]
- Department of Environment of Iran. Estimation of Damages to Biological and Economic Resources Caused by Dust. 11p. (In Farsi). 2020. Available online: https://www.researchgate.net/publication/374953580_Socioeconomic_impacts_of_the_dust_storms_in_southwest_Iran/fulltext/653963bc24bbe32d9a6f05f8/Socioeconomic-impacts-of-the-dust-storms-in-southwest-Iran.pdf (accessed on 23 December 2024).
- Cazabat, C.; Yasukawa, L. Unveiling the Cost of Internal Displacement: 2020 Report; IDMC: Castle Hill, NSW, Australia, 2020. [Google Scholar]
- Hafeznia, M.R.; Taheri, A.; Farajzadeh Asl, M. Political Effects resulting from dust storms in Tigris and Euphrates basins. Geopolit. Q. 2016, 12, 13–38. [Google Scholar]
- Chudnovsky, A.; Kostinski, A. Secular Changes in Atmospheric Turbidity over Iraq and a Possible Link to Military Activity. Remote Sens. 2020, 12, 1526. [Google Scholar] [CrossRef]
- Notaro, M.; Yu, Y.; Kalashnikova, O.V. Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought. J. Geophys. Res. Atmos. 2015, 120, 110–229. [Google Scholar] [CrossRef]
- Yu, Y.; Notaro, M.; Liu, Z.; Wang, F.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Climatic Controls on the Interannual to Decadal Variability in Saudi Arabian Dust Activity: Toward the Development of a Seasonal Dust Prediction Model: Saudi Arabian Dust Prediction. J. Geophys. Res. 2015, 120, 1739–1758. [Google Scholar] [CrossRef]
- Nasreen, S.; Ashraf, M.A. Inadequate Supply of Water in Agriculture Sector of Pakistan Due to Depleting Water Reservoirs and Redundant Irrigation System. Water Conserv. Manag. 2021, 5, 13–19. [Google Scholar] [CrossRef]
- Attiya, A.A.; Jones, B.G. Assessment of mineralogical and chemical properties of airborne dust in Iraq. SN Appl. Sci. 2020, 2, 1614. [Google Scholar] [CrossRef]
- Neelamani, S.; Al-Dousari, A. A study on the annual fallout of the dust and the associated elements into the Kuwait Bay, Kuwait. Arab. J. Geosci. 2016, 9, 1–11. [Google Scholar] [CrossRef]
- Nabavi, S.S.; Moradi, H.; Shrifikia, M. Evaluation of dust storm temporal distribution and the relation of the effective factors with the frequency of occurrence in Khuzestan Province from 2000 to 2015. Sci.-Res. Q. Geogr. Data 2019, 28, 191–203. (In Farsi) [Google Scholar]
- Alshemmari, H.; Al-Dousari, A.M.; Talebi, L.; Al-Ghadban, A.N. Mineralogical characteristics of surface sediment in Sulaibikhat Bay, Kuwait. Kuwait J. Sci. 2013, 40. Available online: https://journalskuwait.org/kjs/index.php/KJS/article/view/122 (accessed on 23 December 2024).
- Mahmoudi, L.; Ikegaya, N. Identifying the Distribution and Frequency of Dust Storms in Iran Based on Long-Term Observations from over 400 Weather Stations. Sustainability 2023, 15, 12294. [Google Scholar] [CrossRef]
- Masoumi, A.; Moradhaseli, R. Spatio-temporal classification of dust source activities affecting the Khuzestan region, based on CALIPSO-CALIOP data and atmospheric models. Atmos. Res. 2023, 287, 106702. [Google Scholar] [CrossRef]
- Shaheen, A.; Wu, R.; Yousefi, R.; Wang, F.; Ge, Q.; Kaskaoutis, D.G.; Wang, J.; Alpert, P.; Munawar, I. Spatio-temporal changes of spring-summer dust AOD over the Eastern Mediterranean and the Middle East: Reversal of dust trends and associated meteorological effects. Atmos. Res. 2023, 281, 106509. [Google Scholar] [CrossRef]
- Yousefi, R.; Wang, F.; Ge, Q.; Shaheen, A.; Kaskaoutis, D.G. Analysis of the Winter AOD Trends over Iran from 2000 to 2020 and Associated Meteorological Effects. Remote Sens. 2023, 15, 905. [Google Scholar] [CrossRef]
- Rahimi, J.; Malekian, A.; Khalili, A. Climate change impacts in Iran: Assessing our current knowledge. Theor. Appl. Climatol. 2019, 135, 545–564. [Google Scholar] [CrossRef]
- Rahimzadeh, F.; Nassaji Zavareh, M. Effects of adjustment for non-climatic discontinuities on determination of temperature trends and variability over Iran. Int. J. Climatol. 2014, 34, 2079–2096. [Google Scholar] [CrossRef]
- Ghasemi, F.F.; Mohammadi, A.; De-la-Torre, G.E.; Saeedi, R.; Dobaradaran, S. Occurrence of polychlorinated biphenyls in indoor dust of different buildings in Bushehr port, Iran. Air Qual. Atmos. Health 2024, 17, 1479–1490. [Google Scholar]
- Shirvani, M.; Sherkat, Z.; Khalili, B.; Bakhtiary, S. Sorption of Pb (II) on palygorskite and sepiolite in the presence of amino acids: Equilibria and kinetics. Geoderma 2015, 249, 21–27. [Google Scholar] [CrossRef]
- Balling, R.J. A Car-Free, Polycentric City, with Multi-Level Skybridges and Inter-Building Atria. CTBUH J. 2016, 3, 28–33. [Google Scholar]
- Nyika, J.; Dinka, M. Managing Water Scarcity in an Era of Climate Change in Developing Countries: The Case Study of Kenya. Water Conserv. Manag. 2023, 7, 77–82. [Google Scholar] [CrossRef]
- Abyat, A.; Azhdari, A.; Almasi Kia, H.; Joudaki, M. Khuzestan plain continental sabkhas, southwest Iran. Carbonates Evaporites 2019, 34, 1469–1487. [Google Scholar] [CrossRef]
- Cao, H.; Liu, J.; Wang, G.; Yang, G.; Luo, L. Identification of sand and dust storm source areas in Iran. J. Arid. Land 2015, 7, 567–578. [Google Scholar] [CrossRef]
- Ekhtesasi, M.R.; Sepehr, A. Investigation of wind erosion process for estimation, prevention, and control of DSS in Yazd–Ardakan plain. Environ. Monit. Assess. 2009, 159, 267–280. [Google Scholar] [CrossRef]
- Ghanavati, H.; Fatahi Ardakani, A.; Neshat, A. Economic evaluation of environmental dust phenomenon damage (case of study: Ardakan city). Environ. Sci. 2018, 16, 141–158. [Google Scholar]
- Yazdani, S.; Khorami, S.; Salami, H.; Saleh, I. Economic Evaluation of Dust Damage on the Performance of Agricultural Products in Khuzestan Province. Iran. J. Agric. Econ. Dev. Res. 2024, 55, 149–167. [Google Scholar] [CrossRef]
- Pérez, L.; Tobias, A.; Querol, X.; Künzli, N.; Pey, J.; Alastuey, A.; Viana, M.; Valero, N.; González-Cabré, M.; Sunyer, J. Coarse particles From Saharan dust and daily mortality. Epidemiology 2008, 19, 800–807. [Google Scholar] [CrossRef] [PubMed]
- UNEP; WMO; UNCCD. Global Assessment of Sand and Dust Storms; United Nations Environment Programme: Nairobi, Kenya, 2016. [Google Scholar]
- Rashki, A.; Kaskaoutis, D.G.; Mofidi, A.; Minvielle, F.; Chiapello, I.; Legrand, M.; Dumka, U.C.; Francois, P. Effects of Monsoon, Shamal and Levar winds on dust accumulation over the Arabian Sea during summer–The July 2016 case. Aeolian Res. 2019, 36, 27–44. [Google Scholar] [CrossRef]
- Opp, C.M.; Groll, H.; Abbasi, M. Ahmadi Foroushani, Causes and Effects of Sand and Dust Storms: What Has Past Research Taught Us? A Survey. J. Risk Financ. Manag. 2021, 14, 326. [Google Scholar] [CrossRef]
- Albozahr, A.; Quantitative and qualitative study of date palm waste. National Conference on Agricultural Product Wastes (In Farsi). 2005. Available online: https://sid.ir/paper/809013/fa (accessed on 23 December 2024).
- Behrooz, R.D.; Kaskaoutis, D.G.; Grivas, G.; Mihalopoulos, N. Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. Chemosphere 2021, 262, 127835. [Google Scholar] [CrossRef]
- Kwaasi, A.A.A.; Parhar, R.S.; Al-Mohanna, F.A.A. Aeroallergens and viable microbes in sandstorm dust—Potential triggers of allergic and non-allergic respiratory ailments. Allergy 1998, 53, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Al-Dabbas, M.; Ayad Abbas, M.; Al-Khafaji, R. The mineralogical and microorganisms effects of regional dust storms over Middle East region. Intern. J. Water Resour. Arid Environ. 2011, 1, 129–141. [Google Scholar]
- Leski, T.; Malanoski, A.P.; Gregory, M.J.; Lin, B.; Stenger, D. Application of a broad-range resequencing array for detection of pathogens in desert dust samples from Kuwait and Iraq. Appl. Environ. Microbiol. 2011, 77, 4285–4292. [Google Scholar] [CrossRef]
- Thalib, L.; Al-Taiar, A. Dust storms and the risk of asthma admissions to hospitals in Kuwait. Sci. Total Environ. 2012, 433, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Beik Mohamadi, H.; Mokhtarei, R. A Geograplical Analysis on Migration Processin Khoozestan Province. Geogr. Dev. 2003, 1, 21–36. [Google Scholar] [CrossRef]
- Ahmadi, R.; Amanpour, S.; Monfared, S.; Torabi, Z. An Investigation of Primate City Formation Process in Khuzestan Province in 1956–2011. Pažuheš-Nâme-Ye Târix-E Ejtemâ’i Va Eqtesâdi (Socio Econ. Hist. Stud.) 2013, 2, 19–50. [Google Scholar]
- Luis, M.; Igreja, A.; Casimiro, A.P.; Joao, S.P. Carbon dioxide exchange above Mediterranean C3/C4 grassland during two climatologically contrasting years. Global Change Biol. 2008, 14, 539–555. [Google Scholar]
- Ibrahim, M.M.; El-Gaely, G.A. Short-term effects of dust storm on physiological performance of some wild plants in Riyadh, Saudi Arabia. Afr. J. Agric. Res. 2012, 7, 6305–6312. [Google Scholar]
- Javanmard, Z.; Kouchaksaraei, M.T.; Hosseini, S.M.; Pandey, A.K. Assessment of anticipated performance index of some deciduous plant species under dust air pollution. Environ. Sci. Poll. Res. 2020, 27, 38987–38994. [Google Scholar] [CrossRef]
- Ahmadzai, H. The impact of sand and dust storms on agriculture in Iraq. Middle East Dev. J. 2023, 15, 50–65. [Google Scholar] [CrossRef]
- Shao, Y.; Wyrwoll, K.H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeol. Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Madani, K.; AghaKouchak, A.; Mirchi, A. Iran’s socio-economic drought: Challenges of a water-bankrupt nation. Iran. Stud. 2016, 49, 997–1016. [Google Scholar] [CrossRef]
- Soliman, M.M.; Al-Khalaf, A.A.; El-Hawagry, M. Effects of Climatic Change on Potential Distribution of Spogostylum ocyale (Diptera: Bombyliidae) in the Middle East Using Maxent Modelling. Insects 2023, 14, 120. [Google Scholar] [CrossRef]
- Maleki, T.; Sahraie, M.; Sasani, F.; Shahmoradi, M. Impact of dust storm on agricultural production in Iran. Intern. J. Agric. Sci. Res. Technol. Ext. Educ. Syst. (IJASRT EES) 2017, 7, 19–26. [Google Scholar]
- Nazari, B.; Liaghat, A.; Akbari, M.R.; Keshavarz, M. Irrigation water management in Iran: Implications for water use efficiency improvement. Agric. Water Manag. 2018, 208, 7–18. [Google Scholar] [CrossRef]
- Ahmadi, H.; Baaghideh, M.; Dadashi-Roudbari, A. Climate change impacts on pistachio cultivation areas in Iran: A simulation analysis based on CORDEX-MENA multi-model ensembles. Theor. Appl. Climatol. 2021, 145, 109–120. [Google Scholar] [CrossRef]
- Bazzi, F.; Hoseyni, S.; Turki, M.A. Investigating the effects of dust on the livelihood of villagers (Case study: Nimroz city). J. Rural. Dev. Strateg. 2021, 8, fa367–fa379. [Google Scholar]
- Abdelouahhab, Z.; Arias-Jimenez, E.J. Date palm cultivation. In FAO Plant Production and Protection Paper; FAO: Rome, Italy, 1999; Volume 156. [Google Scholar]
- Mihi, A.; Tarai, N.; Chenchouni, H. Can palm date plantations and oasification be used as a proxy to fight sustainably against desertification and sand encroachment in hot drylands? Ecol. Indic. 2019, 105, 365–375. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Zoghipour, M.H.; Torshizi, M.; Nazari, M.R.; Moradkhani, N. Gone with the wind: Impact of soil-dust storms on farm income. Ecol. Econ. 2021, 188, 107133. [Google Scholar] [CrossRef]
- Shirkhani-Ardehjani, S. IR of Iran National Report on Regional Action Plan to combat dust and sand storm. In Proceedings of the International Cooperative for Aerosol Prediction (ICAP) 4th Workshop: Aerosol Emission and Removal Processes, ESA/ESRIN, Frascati, Italy, 14–17 May 2012. [Google Scholar]
- Zucca, C.; Fleiner, R.; Bonaiuti, E.; Kang, U. Land degradation drivers of anthropogenic sand and dust storms. Catena 2022, 219, 106575. [Google Scholar] [CrossRef]
- Alshawaf, M.; Poudineh, R.; Alhajeri, N.S. Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty. Renew. Sustain. Energy Rev. 2020, 134, 110346. [Google Scholar] [CrossRef]
- Goudarzi, G.; Hopke, P.K.; Yazdani, M. Forecasting PM2.5 concentration using artificial neural network and its health effects in Ahvaz, Iran. Chemosphere 2021, 283, 131285. [Google Scholar] [CrossRef] [PubMed]
- Middleton, N.; Kashani, S.S.; Attarchi, S.; Rahnama, M.; Mosalman, S.T. Synoptic causes and socio-economic consequences of a severe dust storm in the Middle East. Atmosphere 2021, 12, 1435. [Google Scholar] [CrossRef]
- Raphael, D.; Farrell, E.S. Beyond medicine and lifestyle: Addressing the societal determinants of cardiovascular disease in North America. Leadersh. Health Serv. 2002, 15, 1–15. [Google Scholar] [CrossRef]
- Škare, M.; Družeta, R.P. Poverty and economic growth: A review. Technol. Econ. Dev. Econ. 2016, 22, 156–175. [Google Scholar] [CrossRef]
- Jones, C.A.; Perera, A.; Chow, M.; Ho, I.; Nguyen, J.; Davachi, S. Cardiovascular disease risk among the poor and homeless-what we know so far. Curr. Cardiol. Rev. 2009, 5, 69–77. [Google Scholar] [CrossRef]
- Zafeiratou, S.; Samoli, E.; Dimakopoulou, K.; Rodopoulou, S.; Analitis, A.; Gasparrini, A.; Stafoggia, M.; De’ Donato, F.; Rao, S.; Monteiro, A.; et al. A systematic review on the association between total and cardiopulmonary mortality/morbidity or cardiovascular risk factors with long-term exposure to increased or decreased ambient temperature. Sci. Total Environ. 2021, 772, 145383. [Google Scholar] [CrossRef] [PubMed]
- Klompmaker, J.O.; Laden, F.; James, P.; Sabath, M.B.; Wu, X.; Schwartz, J.; Dominici, F.; Zanobetti, A.; Hart, J.E. Effects of long-term average temperature on cardiovascular disease hospitalizations in an American elderly population. Environ. Res. 2023, 216, 114684. [Google Scholar] [CrossRef]
- Torabi Kahlan, P.; Navvabpour, H.; Bidarbakht Nia, A. Missing Aspects of Poverty: The Case of Multidimensional Poverty in Iran. J. Poverty 2022, 26, 424–437. [Google Scholar] [CrossRef]
- Hosseini, G.; Khani, S. Trend Changes and Migration Patterns in the Border Provinces of Iran. Natl. Stud. J. 2019, 20, 93–114. [Google Scholar]
- Savari, M.; Damaneh, H.E.; Damaneh, H.E. Drought vulnerability assessment: Solution for risk alleviation and drought management among Iranian farmers. Int. J. Disaster Risk Reduct. 2022, 67, 102654. [Google Scholar] [CrossRef]
- El Rafei, M.; Sherwood, S.; Evans, J.P.; Ji, F. Analysis of extreme wind gusts using a high-resolution Australian regional reanalysis. Weather. Clim. Extrem. 2023, 39, 100537. [Google Scholar] [CrossRef]
- Shahpari, D.; Hazbavi, A. Study of Immigration Impacts on Population Growth in Khuzestan Province during (1996–2011). Q. J. Soc. Dev. (Previously Hum. Dev.) 2019, 13, 145–162. [Google Scholar] [CrossRef]
- Noroozi, A.; Shoaei, Z. Identifying areas with dust generation potential in the southwest of Iran, case study: Khuzestan Province. Watershed Eng. Manag. 2018, 10, 398–409. [Google Scholar]
- Mohammadi, Z.; Rahimi, D.; Najafi, M.R.; Zakerinejad, R. The impact of environmental degradation and climate change on dust in Khuzestan province, Iran. Nat. Hazards 2024, 120, 1–20. [Google Scholar] [CrossRef]
- Hejazi, S.J.; Sharifi, A.; Arvin, M. Assessment of social vulnerability in areas exposed to multiple hazards: A case study of the Khuzestan Province, Iran. Int. J. Disaster Risk Reduct. 2022, 78, 103127. [Google Scholar] [CrossRef]
- Zhu, G.; Yong, L.; Zhao, X.; Liu, Y.; Zhang, Z.; Xu, Y.; Wang, L. Evaporation, infiltration and storage of soil water in different vegetation zones in the Qilian Mountains: A stable isotope perspective. Hydrol. Earth Syst. Sci. 2022, 26, 3771–3784. [Google Scholar] [CrossRef]
- Eskandari Damaneh, H.; Khosravi, H.; Habashi, K.; Eskandari Damaneh, H.; Tiefenbacher, J.P. The impact of land use and land cover changes on soil erosion in western Iran. Nat. Hazards 2022, 110, 2185–2205. [Google Scholar] [CrossRef]
- Wu, X.; Deng, H.; Huang, Y.; Guo, J. Air pollution, migration costs, and urban residents’ welfare: A spatial general equilibrium analysis from China. Struct. Change Econ. Dyn. 2022, 63, 396–409. [Google Scholar] [CrossRef]
- Jalali, L.; Zarei, M.; Gutiérrez, F. Salinization of reservoirs in regions with exposed evaporites. The unique case of Upper Gotvand Dam, Iran. Water Res. 2019, 157, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Barua, P.; Rahman, S.H.; Barua, S.; Rahman, I.M.M. Climate Change Vulnerability and Responses of Fisherfolk Communities in The South-Eastern Coast of Bangladesh. Water Conserv. Manag. 2020, 4, 20–31. [Google Scholar] [CrossRef]
- Abbasi-Kangevari, M.; Malekpour, M.R.; Masinaei, M.; Moghaddam, S.S.; Ghamari, S.H.; Abbasi-Kangevari, Z.; Rezaei, N.; Rezaei, N.; Mokdad, P.A.H.; Naghavi, P.M.; et al. Effect of air pollution on disease burden, mortality, and life expectancy in North Africa and the Middle East: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Planet. Health 2023, 7, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Santana, J.C.C.; Miranda, A.C.; Rosa, J.M.; Berssaneti, F.T.; Ho, L.L.; da Silva Ferreira, L.L.; Gomes, R.A.; de Araújo, S.A.; Belan, P.A. A neuro-fuzzy model to predict respiratory disease hospitalizations arising from the effects of traffic-related air pollution in São Paulo. Clean Technol. Environ. Policy 2024, 27, 191–204. [Google Scholar] [CrossRef]
- Santana, J.C.C.; Miranda, A.C.; Souza, L.; Yamamura, C.L.K.; Coelho, D.d.F.; Tambourgi, E.B.; Berssaneti, F.T.; Ho, L.L. Clean production of biofuel from waste cooking oil to reduce emissions, fuel cost, and respiratory disease hospitalizations. Sustainability 2021, 13, 9185. [Google Scholar] [CrossRef]
Type | Class | Usage | Period |
---|---|---|---|
Landsat satellites imagery | MSS, TM, ETM+, OLI | Howeizeh wetland surface | 1990–2020 |
Meteorological data | Frequency of dust storms | visibility below 5000 m | 1963–2021 |
Statistical data | Health | Respiratory diseases, cardiovascular patients | 2017–2021 |
Agricultural | Estamran date | 1982–2021 | |
Migration | Population | 2006–2016 |
Region | Cost (USD) | Impacts | Reference |
---|---|---|---|
MENA | 13 billion | UNEP et al. [108] | |
Kuwait | 824,311 per oil tanker 28,180 daily tactical airline | Oil exports, delays in air travel, traffic accident, | Al-Hemoud et al. (2019) [54] |
Iraq | 1.4 ˂ million | Health, transportation, agriculture | Meibodi et al. (2015) [44] |
Iran | 1 ˂ million | Health, transportation, agriculture | Meibodi et al. (2015) [44] |
Khuzestan (southwest) Sistan and Baluchistan (southeast) Kermanshah (west) Illam (west) South Khorasan (northeast) Hormozgan (southwest) | 375 million 250 million 105 million 44 million 69 million 125 million | Health, transportation, agriculture, closure of educational centers, industries, power outages, families | Iran Environment protection office (2020) [111] |
Yazd (central) | 6.8 million | Cleaning, health, electronics, car accidents, airline delay, signs, posts, irrigation | Ekhtesasi and Sepehr (2009) [104] |
Ardakan (central) | ~8.1 million | Treatment, agriculture, air pollution, animal husbandry | Qanavati et al. (2018) [105] |
Zabol (southeast) | 99.1 million | Physical damage and loss of production | Pahlavanravi et al. (2012) [32] |
Khuzestan | ~39 million | Agriculture | Yazdani et al. (2024) [106] |
Season | Respiratory (Death) | CODhd (USD × 1000) | CODhl (USD × 1000) | |||
---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
Spring | 8 | 5 | 125.7 | 82 | 2.44 | 1.97 |
summer | 14 | 11 | 219.9 | 180.4 | 1.82 | 2.41 |
Autumn | 4 | 4 | 62.8 | 65.6 | 1.67 | 1.45 |
Winter | 8 | 7 | 125.7 | 114.8 | 1.94 | 1 |
Total | 34 | 27 | 534.1 | 442.8 | 7.87 | 6.92 |
Season | Cardiovascular (35 ≤ Old) | Cost of Cardiovascular USD*1000 | Cardiovascular (Death) | Cost of Cardiovascular (Death) USD*Million | ||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
spring | 500 | 528 | 172.14 | 214 | 64 | 71 | 1 | 1.1 |
summer | 633 | 841 | 217.93 | 340.9 | 85 | 104 | 1.3 | 1.7 |
autumn | 554 | 670 | 190.73 | 271.64 | 54 | 58 | 0.848 | 0.951 |
winter | 646 | 700 | 222.40 | 283.80 | 64 | 75 | 1 | 1.2 |
Total | 2333 | 2739 | 803.2 | 1110.34 | 267 | 308 | 4.148 | 4951 |
Census | Enter | Exit | Immigration Variance | Cost of Migration Damage (USD*Million) |
---|---|---|---|---|
1996–2005 | 58,854 | 69,025 | −10,171 | 0.476 |
2006–2010 | 60,521 | 114,493 | −53,972 | 2.5 |
2011–2016 | 53,632 | 135,491 | −81,859 | 3.8 |
Total | 173,007 | 319,009 | −146,002 | 6.576 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MalAmiri, N.; Rashki, A.; Al-Dousari, A.; Kaskaoutis, D.G. Socioeconomic and Health Impacts of Dust Storms in Southwest Iran. Atmosphere 2025, 16, 159. https://doi.org/10.3390/atmos16020159
MalAmiri N, Rashki A, Al-Dousari A, Kaskaoutis DG. Socioeconomic and Health Impacts of Dust Storms in Southwest Iran. Atmosphere. 2025; 16(2):159. https://doi.org/10.3390/atmos16020159
Chicago/Turabian StyleMalAmiri, Neamat, Alireza Rashki, Ali Al-Dousari, and Dimitris G. Kaskaoutis. 2025. "Socioeconomic and Health Impacts of Dust Storms in Southwest Iran" Atmosphere 16, no. 2: 159. https://doi.org/10.3390/atmos16020159
APA StyleMalAmiri, N., Rashki, A., Al-Dousari, A., & Kaskaoutis, D. G. (2025). Socioeconomic and Health Impacts of Dust Storms in Southwest Iran. Atmosphere, 16(2), 159. https://doi.org/10.3390/atmos16020159