Comparison of Identified Ice Supersaturated Regions for Contrail Avoidance Using Three Standard Weather Forecast Databases
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- The sources of atmospheric data (Section 4.1);
- The atmospheric parameters used (Section 4.2);
- Equations used for the derived atmospheric data (Section 4.3);
- Thresholds for the SAC and ISSR conditions (Section 4.4).
3.1. Sources of Atmospheric Data
Controlling Agency | Atmospheric Database | Papers |
---|---|---|
NOAA—National Oceanic and Atmospheric Administration | RAP—Rapid Refresh | [10,13,24] |
NOAA | IGRA—Integrated Global Radiosonde Archive | [4,11] |
ECMWF—European Centre for Medium-Range Weather Forecasts | ERA5—ECMWF Atmospheric Reanalysis, 5th Version | [5,15,17,25,26,27,28,29,30,31] |
ECMWF | HRES—High-Resolution Forecast | [14,17,25,28,31,32] |
ECMWF | IFS—Integrated Forecasting System | [2,6,26,28,33] |
DWD—Deutscher Wetterdienst | WAWFOR—World Aviation Weather Forecast | [12] |
3.2. Atmospheric Parameters Used
- Temperature (degrees Fahrenheit, Celsius, Kelvin);
- Altitude (feet above mean sea level);
- Relative humidity to water (RHW) (percentage).
3.3. Equations Used for Derived Atmospheric Data
3.3.1. Method for the Conversion of RHW into RHI
- ew is the saturation vapor pressure (hPa);
- Tst is the steam point temperature (373.15 K);
- T is the temperature (K);
- est is the steam point temperature (1013.25 hPa).
- ei is the saturation vapor pressure over ice (hPa);
- T0 is the ice point temperature (273.16 K);
- T is the temperature (K);
- ei0 is the ice point pressure (6.1173 hPa).
3.3.2. Method for the Conversion of Barometric Pressure into Barometric Altitude
3.4. Thresholds for the SAC and ISS Conditions
4. Discussion
4.1. Comparison of Temperature Across the Three Databases
4.2. Comparison of RHW Across RAP, ERA5, and IGRA
4.3. Comparison of RHI Across the Three Databases
4.4. Comparison of the Count of Days with ISSRs
5. Conclusions
5.1. Limitations
5.2. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
DWD | Deutscher Wetterdienst |
ECMWF | European Centre for Medium-Range Weather Forecasts |
EDT | Eastern Daylight Time |
ERA5 | ECMWF Atmospheric Reanalysis |
GRIB2 | General Regularly Distributed Information in Binary |
GSI | Gridpoint Statistical Interpolation |
GWP20 | Global Warming Potential Time Horizon, 20-Year Equivalent |
HRES | High-Resolution Forecast |
HRRR | High-Resolution Rapid Refresh |
IAGOS | In-Service Aircraft for a Global Observing System |
ICON | ICOsahedral Nonhydrostatic |
IFS | Integrated Forecasting System |
IGRA | Integrated Global Radiosonde Archive |
ISA | International Standard Atmosphere |
NCEI | National Centers for Environmental Information |
NOAA | National Oceanic and Atmospheric Administration |
RAP | Rapid Refresh |
RHI | Relative Humidity with respect to Ice |
RHW | Relative Humidity with respect to Water |
SAC | Schimdt-Appleman Criteria |
WRF-ARF | Advanced Research Weather Research and Forecasting Model |
References
- Schumann, U. On Conditions for Contrail Formation from Aircraft Exhausts. Meteorol. Z. 1996, 5, 4–23. [Google Scholar] [CrossRef]
- Schumann, U. A contrail cirrus prediction model. Geosci. Model Dev. 2012, 5, 543–580. [Google Scholar] [CrossRef]
- Gierens, K.; Spichtinger, P. On the size distribution of ice-supersaturated regions in the upper troposphere and lowermost stratosphere. Ann. Geophys. 2000, 18, 499–504. [Google Scholar] [CrossRef]
- Ebright, K.; Sherry, L. Characteristics of Ice Super Saturated Regions in Washington, D.C. Airspace (2019–2023). Aerospace 2024, 11, 587. [Google Scholar] [CrossRef]
- Kärcher, B.; Burkhardt, U.; Bier, A.; Bock, L.; Ford, I.J. The microphysical pathway to contrail formation. J. Geophys. Res. Atmos. 2015, 120, 7893–7927. [Google Scholar] [CrossRef]
- Schumann, U.; Graf, K.; Mannstein, H. Potential to reduce the climate impact of aviation by flight level changes. In Proceedings of the 3rd AIAA Atmospheric Space Environments Conference, Honolulu, HI, USA, 27–30 June 2011. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef] [PubMed]
- GE Aerospace and NASA Partnering on Flight Tests to Accelerate Industry’s Understanding of Contrails|GE Aerospace News. Available online: https://www.geaerospace.com/news/press-releases/ge-aerospace-and-nasa-partnering-flight-tests-accelerate-industrys-understanding (accessed on 17 November 2024).
- Sherry, L.; Thompson, T. Primer on Aircraft Induced Clouds and Their Global Warming Mitigation Options. Transp. Res. Rec. 2020, 2674, 827–841. [Google Scholar] [CrossRef]
- Avila, D.; Sherry, L.; Thompson, T. Reducing global warming by airline contrail avoidance: A case study of annual benefits for the contiguous United States. Transp. Res. Interdiscip. Perspect. 2019, 2, 100033. [Google Scholar] [CrossRef]
- Roosenbrand, E.; Sun, J.; Hoekstra, J. Optimizing Global Flight Altitudes for Contrail Reduction: Insights from Open Flight and Weather Balloon Data. In Proceedings of the Fifteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2023), Savannah, GA, USA, 5–10 June 2023. [Google Scholar]
- Sausen, R.; Hofer, S.; Gierens, K.; Bugliaro, L.; Ehrmanntraut, R.; Sitova, I.; Walczak, K.; Burridge-Diesing, A.; Bowman, M.; Miller, N. Can we successfully avoid persistent contrails by small altitude adjustments of flights in the real world? Meteorol. Z. 2023, 33, 83–98. [Google Scholar] [CrossRef]
- Rosenow, J.; Fricke, H.; Luchkova, T.; Schultz, M. Minimizing contrail formation by rerouting around dynamic ice-supersaturated regions. Aeronaut. Aerosp. Open Access J. 2018, 2, 105–111. [Google Scholar] [CrossRef]
- Teoh, R.; Schumann, U.; Majumdar, A.; Stettler ME, J. Mitigating the Climate Forcing of Aircraft Contrails by Small-Scale Diversions and Technology Adoption. Environ. Sci. Technol. 2020, 54, 2941–2950. [Google Scholar] [CrossRef] [PubMed]
- Teoh, R.; Schumann, U.; Stettler, M. Beyond Contrail Avoidance: Efficacy of Flight Altitude Changes to Minimise Contrail Climate Forcing. Aerospace 2020, 7, 121. [Google Scholar] [CrossRef]
- Goff, J.A.; Gratch, S. Low-pressure properties of water from −160 to 212 °F, in Transactions of the American Society of Heating and Ventilating Engineers. In Proceedings of the 52nd annual meeting of the American Society of Heating and Ventilating Engineers, New York, NY, USA, 10–13 June 1946; pp. 95–122. [Google Scholar]
- Teoh, R.; Engberg, Z.; Schumann, U.; Voigt, C.; Shapiro, M.; Rohs, S.; Stettler, M. Global aviation contrail climate effects from 2019 to 2021. Atmos. Chem. Phys. 2024, 24, 6071–6093. [Google Scholar] [CrossRef]
- Schmidt, E. Die Entstehung von Eisnebel aus den Auspuffgasen von Flugmotoren (Other 44); Heft 44; Oldenbourg, V.R., Ed.; Schriften der Deutschen Akademie der Luftfahrtforschung: München, Germany, 1941; Available online: https://elib.dlr.de/107948/ (accessed on 12 August 2024).
- Appleman, H. The Formation of Exhaust Condensation Trails by Jet Aircraft. Bull. Am. Meteorol. Soc. 1953, 34, 14–20. [Google Scholar] [CrossRef]
- Rapid Refresh (RAP). Available online: https://rapidrefresh.noaa.gov/ (accessed on 12 August 2024).
- European Centre for Medium-Range Weather Forecasts. ECMWF Reanalysis 5th Addition (ERA5). Available online: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 (accessed on 12 August 2024).
- Integrated Global Radiosonde Archive (IGRA). National Centers for Environmental Information (NCEI). Available online: https://www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-archive (accessed on 12 August 2024).
- Weather and Climate—Deutscher Wetterdienst—Homepage. Available online: https://www.dwd.de/DE/Home/home_node.html (accessed on 11 December 2024).
- Avila, D.; Sherry, L. Method for analysis of Ice Super Saturated Regions (ISSR) in the U.S. airspace. In Proceedings of the 2016 Integrated Communications Navigation and Surveillance (ICNS), Herndon, VA, USA, 19–21 April 2016; pp. 10B2-1–10B2-9. [Google Scholar] [CrossRef]
- Borella, A.; Boucher, O.; Shine, K.; Stettler, M.; Tanaka, K.; Teoh, R.; Bellouin, N. The importance of an informed choice of CO2-equivalence metrics for contrail avoidance. EGUsphere, 2024; preprint. [Google Scholar] [CrossRef]
- Contrails Map. Contrails.Org. Available online: https://map.contrails.org/ (accessed on 26 March 2024).
- Dietmüller, S.; Ponater, M.; Sausen, R.; Hoinka, K.-P.; Pechtl, S. Contrails, Natural Clouds, and Diurnal Temperature Range. J. Clim. 2008, 21, 5061–5075. [Google Scholar] [CrossRef]
- Molloy, J.; Teoh, R.; Harty, S.; Koudis, G.; Schumann, U.; Poll, I.; Stettler, M. Design Principles for a Contrail-Minimizing Trial in the North Atlantic. Aerospace 2022, 9, 375. [Google Scholar] [CrossRef]
- Roosenbrand, E.; Sun, J.; Hoekstra, J. Examining Contrail Formation Models with Open Flight and Remote Sensing Data. In Proceedings of the SESAR Innovation Days 2022, Budapest, Hungary, 5–8 December 2022. [Google Scholar]
- Schumann, U.; Heymsfield, A.J. On the Life Cycle of Individual Contrails and Contrail Cirrus. Meteorol. Monogr. 2017, 58, 3.1–3.24. [Google Scholar] [CrossRef]
- Teoh, R.; Engberg, Z.; Shapiro, M.; Dray, L.; Stettler, M. The high-resolution Global Aviation emissions Inventory based on ADS-B (GAIA) for 2019–2021. Atmos. Chem. Phys. 2024, 24, 725–744. [Google Scholar] [CrossRef]
- Frias, A.M.; Shapiro, M.L.; Engberg, Z.; Zopp, R.; Soler, M.; Stettler ME, J. Feasibility of contrail avoidance in a commercial flight planning system: An operational analysis. Environ. Res. Infrastruct. Sustain. 2024, 4, 015013. [Google Scholar] [CrossRef]
- Thompson, G.; Scholzen, C.; O’Donoghue, S.; Haughton, M.; Jones, R.L.; Durant, A.; Farrington, C. On the fidelity of high-resolution numerical weather forecasts of contrail-favorable conditions. Atmos. Res. 2024, 311, 107663. [Google Scholar] [CrossRef]
- US Department of Commerce. Pressure Altitude Calculator. NOAA’s National Weather Service. Available online: https://www.weather.gov/epz/wxcalc_pressurealtitude (accessed on 2 October 2024).
Characteristic | Short-Lived | Long-Lived | ||
---|---|---|---|---|
Ice Cloud Type | Contrail | Persistent Contrail | Contrail Cirrus | |
Morphology | Line-shaped | Line-shaped | Irregularly shaped | |
Atmospheric Conditions | Ice subsaturated | Ice supersaturated | ||
Duration of Contrails | 1–10 min | 10 min–10 h | ||
Dimensions of Cloud | Depth | 100 m | 100–2000 m | |
Width | 10–100 m | 100–1000 m | <100 km | |
Length | 0.1–10 km | 0.1–10 km | <100 km | |
RF Potential | Negligible | 0.01 W/m2~20% | 0.04 W/m2~80% |
Contrail | Temperature | RHW | RHI | SAC and ISSR Criteria |
---|---|---|---|---|
Non-persistent | T < TCritical | RHW > RHW,Critical | RHI < 100% | SAC |
Long-lived persistent | T < TCritical | RHW > RHW,Critical | RHI > 100% | SAC and ISSR |
Long-lived contrail cirrus | T < TCritical | RHW < RHW,Critical | RHI > 100% | ISSR |
Atmospheric Database | Altitude | Number of Altitudes Reported | Setting |
---|---|---|---|
RAP | 30,226.69 ft–39,023.36 ft | 5 | 16 December 2022–31 July 2024, 16:00 UTC (12:00 Eastern Daylight Time (EDT)) |
IGRA | 30,041.77 ft–39,781.4 ft | 30 | 16 December 2022–31 July 2024, 16:00 UTC (12:00 EDT) |
ERA5 | 200 hPa–300 hPa (30,052.7 ft–38,615 ft) | 4 | 16 December 2022–31 July 2024, 16:00 UTC (12:00 EDT) |
Inputs | Outputs | ||||||
---|---|---|---|---|---|---|---|
Altitude | ISA Temperature (T), K | ISA Ice Point Temperature (T0), K | ISA Steam Point Pressure (est), hPa | Ice Point Pressure (ei0), hPa | Relative Humidity to Water (RHW), % | RHI (Equation (1)), % | RHI (Equations (2) and (3)), % |
FL300 | 228.71 (−47.992 °F) | 273.16 | 1013.25 | 6.1173 | 70 | 107.43 | 116.62 |
FL310 | 226.73 (−51.556 °F) | 273.16 | 1013.25 | 6.1173 | 70 | 109.40 | 120.13 |
FL320 | 224.75 (−55.12 °F) | 273.16 | 1013.25 | 6.1173 | 70 | 111.37 | 123.69 |
FL330 | 222.77 (−58.684 °F) | 273.16 | 1013.25 | 6.1173 | 70 | 113.35 | 127.31 |
FL340 | 220.79 (−62.248 °F) | 273.16 | 1013.25 | 6.1173 | 70 | 115.33 | 130.96 |
FL350 | 218.81 (−65.812 °F) | 273.16 | 1013.25 | 6.1173 | 70 | 117.30 | 134.65 |
FL360 | 216.83 (−69.376 °F) | 273.16 | 1013.25 | 6.1173 | 70 | 119.26 | 138.84 |
FL370 | 216.65 (−69.7 °F) | 273.16 | 1013.25 | 6.1173 | 70 | 119.44 | 138.68 |
FL380 | 216.65 (−69.7 °F) | 273.16 | 1013.25 | 6.1173 | 70 | 119.44 | 138.68 |
FL390 | 216.65 (−69.7 °F) | 273.16 | 1013.25 | 6.1173 | 70 | 119.44 | 138.68 |
Paper | ISSR Threshold for Temperature | ISSR Threshold for RHI |
---|---|---|
[4,10,11,12,13,14,15,24,25,26,28,29,32,33] | <−40 °C | >100% |
[2] | <−40 °C | >80% |
[6] | <−40 °C | >90% |
[30] | <−53.15 °C | >110% |
[17,31] | <−40 °C | >95% |
Altitude Range | T, RAP, °F | T, ERA5, °F | T, IGRA, °F | RAP-IGRA, °F | ERA5-IGRA, °F | |
---|---|---|---|---|---|---|
30,000–30,999 | −32.3194 | −60.910042 | −25.06 | −7.26 | −35.85 | |
31,000–31,999 | N/A | N/A | −30.37 | N/A | N/A | |
32,000–32,999 | −41.5148 | N/A | −37.81 | −3.70 | N/A | |
33,000–33,999 | N/A | −51.4973416 | −42.88 | N/A | −8.62 | |
34,000–34,999 | −50.9981 | N/A | −45.76 | −5.24 | N/A | |
35,000–35,999 | N/A | N/A | −47.92 | N/A | N/A | |
36,000–36,999 | −60.2419 | −41.5173046 | −56.59 | −3.65 | 15.07 | |
37,000–37,999 | N/A | N/A | −58.855 | N/A | N/A | |
38,000–38,999 | N/A | −23.8595836 | −62.89 | N/A | 39.03 | |
39,000–39,999 | −67.9288 | N/A | −64.9075 | −3.02 | N/A | |
Minimum | −7.26 | −35.85 | ||||
Median | −3.70 | 3.23 | ||||
Average | −4.58 | 2.41 | ||||
Maximum | −3.02 | 39.03 | ||||
Standard Deviation | 1.53 | 27.78 |
Altitude Range | RHW, RAP, % | RHW, ERA5, % | RHW, IGRA, % | RAP-IGRA, % | ERA5-IGRA, % | |
---|---|---|---|---|---|---|
30,000–30,999 | 40.784662 | 90.61449397 | 13.3 | 27.48 | 77.31 | |
31,000–31,999 | N/A | N/A | 17.5 | N/A | N/A | |
32,000–32,999 | 49.751245 | N/A | 48.9 | 0.85 | N/A | |
33,000–33,999 | N/A | 96.29752111 | 54.1 | N/A | 42.20 | |
34,000–34,999 | 46.254264 | N/A | 63 | −16.75 | N/A | |
35,000–35,999 | N/A | N/A | 60.85 | N/A | N/A | |
36,000–36,999 | 48.882449 | 86.61227256 | 85.03333333 | −36.15 | 1.58 | |
37,000–37,999 | N/A | N/A | 78.1 | N/A | N/A | |
38,000–38,999 | N/A | 29.60044956 | 51.6 | N/A | −22.00 | |
39,000–39,999 | 30.388008 | N/A | 39.7625 | −9.37 | N/A | |
Minimum | −36.15 | −22.00 | ||||
Median | −9.37 | 21.89 | ||||
Average | −6.79 | 24.77 | ||||
Maximum | 27.48 | 77.31 | ||||
Standard Deviation | 20.98 | 38.05 |
Altitude Range | RHI, RAP, % | RHI, ERA5, % | RHI, IGRA, % | RAP-IGRA, % | ERA5-IGRA, % | |
---|---|---|---|---|---|---|
30,000–30,999 | 59.065315 | 165 | 18.503614 | 40.56 | 146.50 | |
31,000–31,999 | N/A | N/A | 25.046944 | N/A | N/A | |
32,000–32,999 | 75.618805 | N/A | 71.38938533 | 4.23 | N/A | |
33,000–33,999 | N/A | 165 | 82.745468 | N/A | 82.25 | |
34,000–34,999 | 73.812671 | N/A | 99.0561435 | −25.24 | N/A | |
35,000–35,999 | N/A | N/A | 95.462744 | N/A | N/A | |
36,000–36,999 | 81.669442 | 156.40067 | 162.2807643 | −80.61 | −5.88 | |
37,000–37,999 | N/A | N/A | 145.8001425 | N/A | N/A | |
38,000–38,999 | N/A | 40.917481 | 87.239635 | N/A | −46.32 | |
39,000–39,999 | 52.657636 | N/A | 68.443158 | −15.79 | N/A | |
Minimum | −80.61 | −46.32 | ||||
Median | −15.79 | 38.19 | ||||
Average | −15.37 | 44.14 | ||||
Maximum | 40.56 | 146.50 | ||||
Standard Deviation | 39.67 | 75.19 |
RAP | ERA5 | IGRA | |
---|---|---|---|
Count of days with ISSRs, FL300–400 | 281 (47.4%) | 459 (77.4%) | 263 (44.4%) |
Flight Level | RAP | ERA5 | IGRA |
---|---|---|---|
300 | 118 | 252 | 81 |
310 | 69 | 182 | 85 |
320 | 133 | 156 | 84 |
330 | 66 | 173 | 125 |
340 | 108 | 167 | 116 |
350 | 84 | 144 | 112 |
360 | 81 | 129 | 99 |
370 | 80 | 115 | 89 |
380 | 60 | 106 | 90 |
390 | 50 | 82 | 68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rose-Tejwani, A.T.; Sherry, L.; Ebright, K. Comparison of Identified Ice Supersaturated Regions for Contrail Avoidance Using Three Standard Weather Forecast Databases. Atmosphere 2025, 16, 149. https://doi.org/10.3390/atmos16020149
Rose-Tejwani AT, Sherry L, Ebright K. Comparison of Identified Ice Supersaturated Regions for Contrail Avoidance Using Three Standard Weather Forecast Databases. Atmosphere. 2025; 16(2):149. https://doi.org/10.3390/atmos16020149
Chicago/Turabian StyleRose-Tejwani, Amy Tal, Lance Sherry, and Kayla Ebright. 2025. "Comparison of Identified Ice Supersaturated Regions for Contrail Avoidance Using Three Standard Weather Forecast Databases" Atmosphere 16, no. 2: 149. https://doi.org/10.3390/atmos16020149
APA StyleRose-Tejwani, A. T., Sherry, L., & Ebright, K. (2025). Comparison of Identified Ice Supersaturated Regions for Contrail Avoidance Using Three Standard Weather Forecast Databases. Atmosphere, 16(2), 149. https://doi.org/10.3390/atmos16020149