Detection of Atmospheric NO2 Using Scheimpflug DIAL with a Blue External Cavity Diode Laser Source
Abstract
:1. Introduction
2. Methodology and Instrumentation
2.1. Scheimpflug DIAL Principle
2.2. Instrument Design
2.2.1. Wavelength Switching Blue ECDL
2.2.2. NO2 ECDL-DIAL System
2.3. Measurement
3. Results and Discussion
Industrial Zone Environment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ji, J.S.; Liu, L.; Zhang, J.J.; Kan, H.; Zhao, B.; Burkart, K.G.; Zeng, Y. NO2 and PM2.5 air pollution co-exposure and temperature effect modification on pre-mature mortality in advanced age: A longitudinal cohort study in China. Environ. Health 2022, 21, 97. [Google Scholar] [CrossRef]
- Ritz, B.; Hoffmann, B.; Peters, A. The Effects of Fine Dust, Ozone, and Nitrogen Dioxide on Health. Dtsch. Arztebl. Int. 2019, 116, 881–886. [Google Scholar] [CrossRef]
- Meng, X.; Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Milojevic, A.; Guo, Y.; Tong, S.; de Sousa Zanotti Staglior Coelho, M.; Nascimento Saldiva, P.H.; et al. Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: Multilocation analysis in 398 cities. BMJ 2021, 372, n534. [Google Scholar] [CrossRef]
- Brunekreef, B.; Beelen, R.; Hoek, G.; Schouten, L.; Bausch-Goldbohm, S.; Fischer, P.; Armstrong, B.; Hughes, E.; Jerrett, M.; van den Brandt, P. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in The Netherlands: The NLCS-AIR study. Res. Rep. Health Eff. Inst. 2009, 139, 5–71. [Google Scholar]
- Krecl, P.; Targino, A.C.; Landi, T.P.; Ketzel, M. Determination of black carbon, PM2.5, particle number and NOx emission factors from roadside measurements and their implications for emission inventory development. Atmos. Environ. 2018, 186, 229–240. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Khan, J.; Ketzel, M.; Kakosimos, K.; Sørensen, M.; Jensen, S.S. Road traffic air and noise pollution exposure assessment—A review of tools and techniques. Sci. Total Environ. 2018, 634, 661–676. [Google Scholar] [CrossRef]
- Walters, W.W.; Tharp, B.D.; Fang, H.; Kozak, B.J.; Michalski, G. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources. Environ. Sci. Technol. 2015, 49, 11363–11371. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.; Luo, M.; Shao, Y.; Xu, D.; Ma, L. Application of Stable Isotope Techniques in Tracing the Sources of Atmospheric NOx and Nitrate. Processes 2022, 10, 2549. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhu, R.; Miyazaki, K.; McDonald, B.C.; Klimont, Z.; Zheng, B.; Boersma, K.F.; Zhang, Q.; Worden, H.; Worden, J.R.; et al. Decadal variabilities in tropospheric nitrogen oxides over United States, Europe, and China. J. Geophys. Res. Atmos. 2022, 127, e2021JD035872. [Google Scholar] [CrossRef]
- Liu, C.; Xing, C.Z.; Hu, Q.H.; Wang, S.; Zhao, S.; Gao, M. Stereoscopic hyperspectral remote sensing of the atmospheric environment: Innovation and prospects. Earth-Sci. Rev. 2022, 226, 103958. [Google Scholar] [CrossRef]
- Villena, G.; Bejan, I.; Kurtenbach, R.; Wiesen, P.; Kleffmann, J. Development of a new Long Path Absorption Photometer (LOPAP) instrument for the sensitive detection of NO2 in the atmosphere. Atmos. Meas. Tech. 2011, 4, 1663–1676. [Google Scholar] [CrossRef]
- Fredriksson, K.A.; Hertz, H.M. Evaluation of the DIAL technique for studies on NO2 using a mobile lidar system. Appl. Opt. 1984, 23, 1403–1411. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Z.; Hua, D.; Gong, Z.; Mei, L. Research progress of NO2 differential absorption lidar technology. Chin. J. Quantum Electron. 2021, 38, 580–592. [Google Scholar] [CrossRef]
- Cao, N.; Fujii, T.; Fukuchi, T.; Goto, N.; Nemoto, K.; Takeuchi, N. NO2 vertical concentration monitoring by DIAL with high accuracy. In Proceedings of the Second International Asia-Pacific Symposium on Remote Sensing of the Atmosphere, Environment, and Space, Sendai, Japan, 13 February 2001. [Google Scholar] [CrossRef]
- Huang, D.; Du, Y.; Xu, Q.; Ko, J.H. Quantification and control of gaseous emissions from solid waste landfill surfaces. J. Environ. Manag. 2022, 302, 114001. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, F.; Robinson, R.; Gardiner, T.; Finlayson, A.; Connor, A. Differential Absorption Lidar (DIAL) Measurements of Landfill Methane Emissions. Remote Sens. 2017, 9, 953. [Google Scholar] [CrossRef]
- Browell, E.V.; Ismail, S.; Grant, W.B. Differential absorption lidar (DIAL) measurements from air and space. Appl. Phys. B 1998, 67, 399–410. [Google Scholar] [CrossRef]
- Cao, N.; Fukuchi, T.; Fujii, T.; Collins, R.L.; Li, S.; Wang, Z.; Chen, Z. Error analysis for NO2 DIAL measurement in the troposphere. Appl. Phys. B 2005, 82, 141–148. [Google Scholar] [CrossRef]
- Su, J.; McCormick, M.P.; Johnson, M.S.; Sullivan, J.T.; Newchurch, M.J.; Berkoff, T.A.; Kuang, S.; Gronoff, G.P. Tropospheric NO2 measurements using a three-wavelength optical parametric oscillator differential absorption lidar. Atmos. Meas. Tech. 2021, 14, 4069–4082. [Google Scholar] [CrossRef]
- Liu, Q.W.; Wang, X.B.; Chen, Y.F.; Cao, K.F.; Hu, S.X.; Huang, J. Atmospheric NO2 Concentration Detection by Dye Laser Based Differential Absorption Lidar. Acta. Opt. Sin. 2017, 37, 338–345. [Google Scholar] [CrossRef]
- Brydegaard, M.; Malmqvist, E.; Jansson, S.; Larsson, J.; Török, S.; Zhao, G. The Scheimpflug lidar method. In Proceedings of the Lidar Remote Sensing for Environmental Monitoring 2017, San Diego, CA, USA, 30 August 2017. [Google Scholar] [CrossRef]
- Larsson, J.; Bood, J.; Xu, C.T.; Yang, X.; Lindberg, R.; Laurell, F.; Brydegaard, M. Atmospheric CO2 sensing using Scheimpflug-lidar based on a 1.57-µm fiber source. Opt. Express 2019, 27, 17348–17358. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Qin, L.; Hou, Z.; Jing, X.; He, F.; Tan, F.; Zhang, S. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection. Opt. Express 2018, 26, 7423–7436. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Kong, Z.; Ma, T.; Li, L.; Liu, Z. Applications of the Scheimpflug lidar technique in atmospheric remote sensing. In Proceedings of the 2019 Photonics & Electromagnetics Research Symposium—Spring, Rome, Italy, 17–20 June 2019. [Google Scholar] [CrossRef]
- Liu, Z.; Li, L.; Li, H.; Mei, L. Preliminary studies on atmospheric monitoring by employing a portable unmanned Mie-scattering Scheimpflug lidar system. Remote Sens. 2019, 11, 837. [Google Scholar] [CrossRef]
- Mei, L.; Kong, Z.; Guan, P. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies. Opt. Express 2018, 26, A260–A274. [Google Scholar] [CrossRef]
- Mei, L.; Brydegaard, M. Continuous-wave differential absorption lidar. Laser Photonics Rev. 2015, 9, 629–636. [Google Scholar] [CrossRef]
- Mei, L.; Guan, P.; Kong, Z. Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique. Opt. Express 2017, 25, A953–A962. [Google Scholar] [CrossRef]
- Mei, L.; Cheng, Y.; Zhang, Z.; Kong, Z.; Yang, C.; Gong, Z.; Liu, K. Evaluation of systematic errors for the continuous-wave NO2 differential absorption lidar employing a multimode laser diode. Appl. Opt. 2020, 59, 9087–9097. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, S.; Jiang, M.; Li, C.; Zhou, P.; Jiang, Z. High power and high efficiency single-frequency 1030 nm DFB fiber laser. Opt. Laser Technol. 2021, 134, 107519. [Google Scholar] [CrossRef]
- Fu, S.; Zhu, X.; Zong, J.; Norwood, R.A.; Peyghambarian, N. Diode-pumped 1.15 W linearly polarized single-frequency Yb3+-doped phosphate fiber laser. Opt. Express 2021, 29, 30637–30643. [Google Scholar] [CrossRef]
- Sarzała, R.P.; Śpiewak, P.; Nakwaski, W.; Wasiak, M. Cavity designs for nitride VCSELs with dielectric DBRs operating efficiently at different temperatures. Opt. Laser Technol. 2020, 132, 106482. [Google Scholar] [CrossRef]
- Ishii, H.; Kasaya, K.; Oohashi, H. Spectral linewidth reduction in widely wavelength tunable DFB laser array. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 514–520. [Google Scholar] [CrossRef]
- Dhoore, S.; Roelkens, G.; Morthier, G. III-V-on-silicon three-section DBR laser with over 12 nm continuous tuning range. Opt. Lett. 2017, 42, 1121–1124. [Google Scholar] [CrossRef]
- Peng, X.Q.; Luo, W.X.; Bai, Y.; Zhang, B.; Zhang, Y.S.; Ling, Q.; Chen, H.; Luo, S.; Guan, Z.Z.; Chen, D.R. Study of wavelength-switchable watt-level blue external cavity diode laser for NO2 S-DIAL. Laser Phys. 2022, 33, 015801. [Google Scholar] [CrossRef]
- Serafini, V.; Riva, M.; Pippione, G.; Mirigaldi, A.; Coriasso, C.; Codato, S.; Gotta, P.; Maina, A.; Paoletti, R.; Perrone, G. Compact high-brightness and highly manufacturable blue laser modules. In Proceedings of the SPIE High-Power Diode Laser Technology XIX, Online, 10 March 2021. [Google Scholar] [CrossRef]
- Chen, M.H.; Hsiao, S.C.; Shen, K.T.; Tsai, C.C.; Chui, H.C. Single longitudinal mode external cavity blue InGaN diode laser. Opt. Laser Technol. 2019, 116, 68–71. [Google Scholar] [CrossRef]
- Brydegaard, M.; Gebru, A.; Svanberg, S. Super resolution laser radar with blinking atmospheric particles. Prog. Electromagn. Res. 2014, 147, 141–151. [Google Scholar] [CrossRef]
- Carpentier, J. Improvements in Enlarging or Like Cameras. Great Britain Patent 1901.11.02.
- Mei, L.; Brydegaard, M. Development of a Scheimpflug lidar system for atmospheric aerosol monitoring. In Proceedings of the 27th International Laser Radar Conference, Online, 7 June 2016. [Google Scholar] [CrossRef]
- Hawthorrn, C.J.; Weber, K.P.; Scholten, R.E. Littrow configuration tunable external cavity diode laser with fixed direction output beam. Rev. Sci. Instrum. 2001, 72, 4477–4479. [Google Scholar] [CrossRef]
- Mei, L.; Zhang, L.; Kong, Z.; Li, H. Noise modeling, evaluation and reduction for the atmospheric lidar technique employing an image sensor. Opt. Commun. 2018, 426, 463–470. [Google Scholar] [CrossRef]
- Villena, G.; Bejan, I.; Kurtenbach, R.; Wiesen, P.; Kleffmann, J. Interferences of commercial NO2 instruments in the urban atmosphere and in a smog chamber. Atmos. Meas. Tech. 2012, 5, 149–159. [Google Scholar] [CrossRef]
- Cheng, Y.; Yu, J.; Kong, Z.; Mei, L. Diode-laser based field deployable continuous-wave differential absorption lidar for atmospheric NO2 monitoring. Opt. Lasers Eng. 2024, 181, 108344. [Google Scholar] [CrossRef]
- Liu, Q.W.; Chen, F.Y.; Wang, J.; Huang, J.; Hu, S.X. Effects of wavelength shift and energy fluctuation on inversion of NO2 differential absorption lidar. Opt. Prec. Eng. 2018, 26, 253–260. [Google Scholar] [CrossRef]
Model | Specifications |
---|---|
High-power laser diode | Wavelength: 450 nm, Power: 5 W |
Collimating lens | Diameter: 12.5 mm, Focus length: 8 mm; |
Diffractive grating | Dimensions: 12.7 mm × 12.7 mm, 1800 grooves/mm; |
Piezoelectric transducer ceramics | Dimensions: 5.0 mm × 5.0 mm × 52.2 mm, Displacement: 57.5 µm |
Time | Relative Bias (0.1–1 km) |
---|---|
20:30 | 24.27% |
21:30 | 21.72% |
22:30 | 11.28% |
23:30 | 5.47% |
00:30 | 7.94% |
01:30 | 6.41% |
02:30 | 8.06% |
03:30 | 2.05% |
04:30 | 12.65% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, C.; Luo, W.; Xiao, A.; Peng, X.; Zhang, B.; Wang, L.; Ling, Q.; Zhou, Y.; Guan, Z.; Chen, D. Detection of Atmospheric NO2 Using Scheimpflug DIAL with a Blue External Cavity Diode Laser Source. Atmosphere 2025, 16, 138. https://doi.org/10.3390/atmos16020138
Yao C, Luo W, Xiao A, Peng X, Zhang B, Wang L, Ling Q, Zhou Y, Guan Z, Chen D. Detection of Atmospheric NO2 Using Scheimpflug DIAL with a Blue External Cavity Diode Laser Source. Atmosphere. 2025; 16(2):138. https://doi.org/10.3390/atmos16020138
Chicago/Turabian StyleYao, Cheng, Weixuan Luo, Anping Xiao, Xiqing Peng, Bin Zhang, Longlong Wang, Qiang Ling, Yan Zhou, Zuguang Guan, and Daru Chen. 2025. "Detection of Atmospheric NO2 Using Scheimpflug DIAL with a Blue External Cavity Diode Laser Source" Atmosphere 16, no. 2: 138. https://doi.org/10.3390/atmos16020138
APA StyleYao, C., Luo, W., Xiao, A., Peng, X., Zhang, B., Wang, L., Ling, Q., Zhou, Y., Guan, Z., & Chen, D. (2025). Detection of Atmospheric NO2 Using Scheimpflug DIAL with a Blue External Cavity Diode Laser Source. Atmosphere, 16(2), 138. https://doi.org/10.3390/atmos16020138